
~

~"'

~

CROMEMCO 16K EXTENDED BASIC USER'S MANUAL

Copyright 1978

Cromemco, Inc ..
280 Bernardo Avenue

Mountain View, CA 94040

Part No. 023-0037 Revision 2.0

..J

~

Chapter 1

TABLE OF CONTENTS

Page No.

1.0 Introduction: Design Criteria of Cromemco
16K Extended BASIC 1

1.1 Background: Computers and Computing Power ... 9

High Level and Low Level Languages 11
BASIC and Its Uses 13

1.2 A Glossary of Terms Used in 16K BASIC 15

1.3 Programming Formats for 16K BASIC •••• 27

~

Program Directive Statements 27
Program Command Instructions 28
Programmed Functions 29
String Control Statements 30
Printing Formats 31
Numerical Representation in 16K BASIC 31
Hexadecimal Numbers 35
Arithmetic Operations 36
Boolean Operators 38

• • 40
· 41
· 43

1.4 Logging On With 16K BASIC

16K BASIC From Disk .
16K BASIC From PROM .
16K BASIC From Paper Tape .
Automatic Startup and Program Execution

From CDOS .
Entering a New Program .

· 39

•• 45
. • 47

1.5 Stepping Through a BASIC Program 51

Chapter 2

2.0 16K BASIC Program Instructions 59

Multiple Statements 60

/~

2.1 Instructions Which Can Be Used As Both
Statements and Commands 61

i

TABLE OF CONTENTS (continued)

Chapter 2 (cont'd) Page No.

'~

DEG •••••.•••••••••••••••• 62
DELETE •••••••••••••••••••• 63
DIM •••••••••••••••••••••• 64
FOR-NEXT ••••••••••••••••••• 65
GOTO ••••••••••••••••••••• 6 7
GOSUB- RETURN •••••••••••••.••• 68
IF-THEN •••••••••••••••••••• 70
IMODE ••••••••••••••••••••• 72
I NP UT ••••••••••.•••••••••• 73
INTEGER •••••••••••••••••••• 75
LE T •••••••••••••••••••••• 7 6
LFMODE •••••••••••••••••••• 77
LIST ••••••••••••••••••••• 78
LONG ••••••••••••••••••••• 80
ON-GOTO and ON-GOSUB ••••••••••••• 81
PRINT ••••••••••••••••••••• 83
RAD •••••••••••••••••••••• 8 6
RANDOMI ZE ••••••••••••••••••• 87
READ •••.••••••••••••••••• 8 8
REM •••••••••••••••••••••• 89
RESTORE •••••••••••••••••••• 90
RUN•••••••••••••••••••••• 9 2
SCR •••••••••••••••••••••• 93
SFMODE •••••••••••••••••••• 94
SHORT ••••••••••••••••••••• 95

2.2 Program Instructions Which Can Be Used Only
As Statements •••••••••••••••• 96

~

DATA ••••••••••••••
END ••••••••••••••
STOP •••••••••••

••• 97
. . . . 98
. . . .99

2.3 Program Instructions Which Can Be Used Only
As Commands •••••••••••••••• 100

AUTOL •••.•••••••••••••••• 101
CON••••••••••••••••••••• 102
DIR ••••••••••••••••••••• 103
RENUMBER •••••••••••••••••• 104

ii

~

~.

TABLE OF CONTENTS (continued)

Chapter 2 (cont'd) Page No.

2.4

2.5

String Control Instructions ..

String Protocol .
Subscripting String Variables ..

Programmed Functions .

Arithmetic Functions .

· .107

· .107
· .111

· .114

· .117

~

AB S (X) ••••••••••••••••• 11 7
BINAND (X,Y) 118
BINOR (X,Y) 118
BINXOR (X,Y) 118
EXP (X) 119
FRA (X) 120
FRE (X) 121
INT (X) 12 2
IRN (X) 123
LOG (X) 124
MAX (X) 12 5
MI N (X) ••••••••••••••••• 12 6
RND (X) 127
SGN (X) ••••••••••••••••• 12 8
SQR (X) 129

Trigonometric Functions . · 130

ATN (X) .················130
COS

(X) .················131
SIN

(X) .················132
TAN

(X) .················133

String Functions ..

ASC (X$) .
CHR$ (X) .
LE N (X$) ••............•
POS (X$,Y$,n) .
STR$ (n) .
VAL (X$) .

134

· 134
· 135
· 136
· 137
· 138
· 139

~ Programmer Defined Functions (DEF FNs (X)) .. 140

iii

TABLE OF CONTENTS (continued)

Chapter 2 (cont'd) Page No.

'----/

.. . . .

ECHO .
ESC .
INP and OUT ..
MAT m=n .
NOECHO .•..
NOESC .
NTRACE .
ON ERROR .
ON ESC ..
PEEK and POKE .
PRINT USING
SET ...
SPC
SYS •••
TAB .
TRACE .
USR .

2.6 Advanced Program Instructions, Functions,
and Examples•. 141

. 142
. 143

. 144
· 145

. 146
. 147

· 148
· 149

· . 151
· 152

· 153
. . . • . . • . . • • . . 165

................ 167
· 168

• .. 169
· 171

· 172

Chapter 3

'--./

3.0

3.1

File Organization •

File Definition and Use
Applicability ..•
File Naming Conventions
I/O Channels .
Device Drivers .
Random Access Files .

File Statements .

OPEN •.....•......•.... to

CLOSE ...•..
PUT •.•..•... ~ ••. " .••.
GET •.•••••••••..••••..
Notes on "Binary Format" .
PRINT•...
INPUT• 0 •••••

iv

· 173

173
· . 173

· 173
• . 174
· . 174

· 176

· .. 178

· 179
· .. 181

• ••.. 182
• .. 183

· 184
· 185
· 186

----~-

~
TABLE OF CONTENTS (continued)

Chapter 3 (cont'd) Page No.

3.2 File Instructions and Functions .. .188

BYE ...•................... 188
CREATE 189
DIR 190
DSK 191
ENTE R 192
ERAS E•........... 193
IOSTAT 194
LIST 195
LOAD•....... 19 6
RENAME •.................... 197
RUN ..•..•...•...•••.•.•... 19 8
SAVE 199

Chapter 4

./~ 4.0 Examples of 16K BASIC Program Structure. · .200

Appendix A:

4.1

4.2

4.3

Active Bandpass Filter Calculation

Statistical Analysis Program

Demonstration Program ..

BASIC Error Messages ..

· .200

.207

.211

.213

Appendix B: ASCII Character Codes .219

. . . • . .226
.228

.229

Appendix C: Adding Device Drivers to BASIC ...

Device Driver List ..•.....
TU-ART I/O Port Driver
Changing the Number of I/O Channels

.220

~

Appendix D:

Appendix E:

Areas of User Interest.

Patch Space .

Programming Hints

Chaining BASIC Programs .

v

· .230

· .233

••• 234

. . . • .236

J

~

,~

~

- 1

1.0 INTRODUCTION: DESIGN CRITERIA OF CROMEMCO l6K EXTENDED BASIC

Many different versions of BASIC are commercially available

from computer manufacturers. These different versions may vary

greatly in computational precision, programming power, ease of

programming, speed of execution, and amount of memory required

for the BASIC program. For example, there are a number of

BASICs available which are similar in capability to the

original BASIC developed at Dartmouth College. These BASICs

typically require about 8K of memory. There are also a

number of "tiny" BASICs available that require only 2K of

memory but which have different or less capability than an

8K BASIC. For many of today's demanding applications, more

features are required than were provided in the original

Dartmouth BASIC. A BASIC that provides advanced features and

capabilities is frequently called an Extended BASIC. The

features included in Extended BASICs may also vary widely

among computer manufacturers.

Cromemco l6K Extended BASIC (which was developed

exclusively for Cromemco by Shepardson Microsystems, Inc.)

was designed to maximize computational precision, programming

power, and speed of execution by fully utilizing the extensive

158 instruction set of the Z-80 microprocessor.

Cromemco's powerful Extended BASIC was specifically

designed to meet the most demanding requirements of business

- 2

~

firms (such as inventory and accounting programs) while

providing the flexibility and speed necessary for real-time

control applications in both industry and the home. A brief

review of some of the features included in Cromemco 16K

Extended BASIC follows.

One major feature of Cromemco 16K Extended BASIC is

rapid, 14-digit arithmetic using the powerful, binary-coded

decimal (BCD) arithmetic instructions which are unique to

the Z-80 microprocessor. All arithmetic operations are

performed using the 16 high-speed registers of the central

processor for intermediate storage. The speed and precision

obtained when performing BCD arithmetic cannot be obtained

on 7-register microprocessors such as the 8080. Many .~

BASICs were designed for six- or seven-digit precision using

computer-oriented binary arithmetic. It is possible to do

calculations which are as accurate using binary arithmetic

as they are using BCD arithmetic. However, many BASICs which

use binary arithmetic have introduced highly visible errors

when calculating dollar and cent conversions in business and

financial programs. These conversion errors cannot occur in

BASICs which utilize BCD arithmetic. In addition to arithmetic

operations, all functions in Cromemco 16K Extended BASIC are

computed to 14-digit accuracy. Many other BASICs that provide

14-digit accuracy do so at greatly reduced execution speeds

and often without carrying full accuracy through all subroutines.

~'

~

r----.

~

- 3

Real-time control applications·often require integer,

l6-bit (4~ digit) arithmetic. Cromemco l6K Extended BASIC

provides this capability along with direct memory, input/

output, and machine-code subroutine access through BASIC

commands.

There is also often a need in real-time control system

applications to store large arrays of data. Cromemco l6K

Extended BASIC offers the flexibility of allowing the user

to manipulate, store, and retrieve six-digit floating point

numbers. This abbreviated form of the highly efficient,

l4-digit mathematics capability is also slightly faster in

execution than the l4-digit format.

Furthermore, in Cromemco l6K BASIC (unlike most micro­

computer BASICs), constants used in program lines cause

execution speeds as fast or faster than variable references.

In addition, integer constants occupy no more room than a

variable reference.

Execution speed is maximized in l6K Extended BASIC by

the utilization of a semi-compiling design. The semi­

compiling design provides many of the important features of

both a compiler and an interpreter. In other words, the

properties of a compiler which provide high execution speed

are combined with the interactive capabilities and programming

ease provided through an interpreter. For example, programs

may be stopped during execution, examined, and modified. The

computer may then be instructed to continue to run the program

without affecting the proper execution of the program. The

ability to stop, examine, and modify programs can greatly

reduce the time and cost associated with custom programming.

- 4

This interactive capability is not available with optimized

compilers. The semi-compiling operation of l6K Extended

BASIC is performed after each program line is entered. Any

obvious errors are detected at the time of entry rather than

during execution. Consequently, the time required to enter

and debug a program is reduced substantially.

Some versions of BASIC have either rudimentary or no

error message capability. with these versions, if a "fatal"

error causes the program to "crash" or halt unexpectedly

during execution, it is up to the user to reconstruct the

failure within the program. Other versions will produce a

numerical value after the program fails. This value must

be interpreted on a list of error messages. Some more

powerful BASIC programs will return an English-language

statement explaining the failure "after the fact". Cromemco

l6K Extended BASIC not only generates English-language error

messages, but it also examines each statement as it is

entered and prints error messages immediately. The value

of such pre-checking, using the error messages, can be

pronounced. This capability is especially important when

doing corrections to real-time control systems where

inadvertent errors in modifications can be costly. In

general programming, the interactive aspect of the error

messages is extremely convenient and.can substantially reduce

programming time and errors.

~

~/

"----./'

~

f'

~

- 5

Dynamic error trapping is provided in Cromemco 16K

Extended BASIC for specialized routing of program flow in

response to a BASIC-generated error message. For example,

using the error trapping feature, overflow and underflow

arithmetic errors can be handled without operator assistance.

The value of this feature in preparing programs that will

be used by unskilled operators cannot be underestimated. For

instance, should a disk read/write error occur, 16K Extended

BASIC can be programmed to type out a message such as

"CALL MR. HIGGINS (415-030-1234) IN THE ACCOUNTING DEPARTMENT",

thereby alerting skilled personnel who can correct the problem.

A TRACE feature is provided in Cromemco 16K BASIC to

help determine the origin of errors which are difficult to

find in a program being written. Line numbers are logged

as they are executed with this feature. FOR loops are

automatically indented as they are logged in the TRACE

mode.

Cromemco 16K Extended BASIC also has advanced floppy disk

input/output capabilities. For example, both programs and data

may be stored. Programs may be stored in binary or ASCII

format. Numeric and string data may be stored on disk using

sequential or random access methods. The number of files

which may be opened simultaneously is limited only by the amount

of memory the user allocates for file purposes, and an unlimited

number of files may be opened and closed during the course of

a program. Chaining of program segments too large to fit in

- 6

memory at one time can be performed with variables passed

through disk files. File names can be string variables and

can be changed dynamically by the BASIC program. BASIC

programs can be written, modified, or run by other BASIC

programs. Line numbers can be altered and two programs can

be called off disk and concatenated into one program. The

versatility provided through the interaction of Cromemco's

CDOS disk operating system and the disk input/output

capabilities of Cromemco l6K Extended BASIC is uncommon.

Many BASICs have string handling capability. However,

many of these limit the number of characters that can be

stored in the string to a maximum of 64. In Cromemco l6K

Extended BASIC, up to 32,768 characters or the available

memory space are allowed -- whichever limit is smaller.

Substrings are utilized to rapidly manipulate these strings.

Again, the design of the language emphasizes speed, versatility,

and accuracy. A special, high-speed, string-searching function

is provided to increase throughput in string manipulation and

sorting operations (such as are commonly found in mailing list

processing programs) .

Program listings from l6K BASIC are print justified and

are uniformly spaced automatically for reading ease and clarity

of documentation. FOR loops are also automatically nested and

indented by the listing function. In the semi-compiling

operation, the only statements that are directly stored in

~

'.~/

~

~

,,~

~

- 7

memory at entry time are the REM comment statements (and even

here spaces are compressed). All other statements are

semi-compiled and stored in machine-readable format. When

listed, this machine-readable format is reconverted into

ASCII format and then printed. Thus all spacing and other

variations are lost in the conversion process. This conversion

process allows Cromemco 16K BASIC to efficiently store large

programs by storing programs only once in semi~compiled format.

In contrast, many other BASICs always maintain an uncompiled

"one-to-one" representation of what was typed in, along with

any internal, execution-related storage. Such BASICs require
.

extra program storage if blank spaces are typed inadvertently

into the program text. Blank spaces can slow down program

execution. Cromemco 16K Extended BASIC does not store, nor

is it affected by, inadvertently typed blank spaces. Further-

more, these extra blank spaces are not listed in the program

output.

There are a number of features commonly found in most

Extended BASICs that are included in Cromemco 16K Extended

BASIC. These features include multi-statement lines; one,

two, and three dimensional arrays; 26 user-definable

functions; advanced formatting capabilities with PRINT USING,

TAB, SPACE, and SYS functions; and direct machine language

interaction with INP, OUT, PEEK, POKE, and USR commands.

Finally, Cromemco 16K Extended BASIC also has flexible INPUT

and PRINT routines which are capable of supporting a wide

- 8

range of terminals and line printers.

This manual was designed for use both by users who

have no prior experience with BASIC and by experienced

programmers. Users with no prior experience are encouraged

to read through all the sections in Chapter 1. These sections

include introductory background material and material designed

to show the inexperienced user how to input a BASIC program

on a terminal. The experienced programmer can skip these

sections and proceed directly to Chapters 2 and 3. Chapters 2

and 3 contain descriptions of all commands available in

Cromemco 16K Extended BASIC.

'---../'

'-.---'

~'

~

// •..."

~

- 9

1.1 BACKGROUND: COMPUTERS AND COMPUTING POWER

A computer is a device which performs high-speed

mathematical or logical calculations or which processes

information derived from coded data in accordance with a

predetermined program. This predetermined program is a

set of instructions arranged in logical sequence which

directs the computer to perform a desired operation.

All computers are based on one fundamental concept

the binary digit. The binary number system uses only the

digits 0 and 1. What makes the binary digit concept so

useful is that it can be represented by any device which

is capable of assuming one of two possible stable states.

A computer, even in its most complex form, is simply a

collection of logic gates which respond to the presence

or absence of a voltage. The presence or absence of such

voltages, called "logic levels", makes it possible to

represent binary conditions in a logic circuit. Typically,

these logic levels are defined as O's for off states and

lIs for on states.

Binary digits, commonly called bits, can be used to

represent numbers of any magnitude by grouping digits

together. The primary level at which binary digits 'are

grouped within a particular computer is called word size.

Most microcomputers use an 8-bit word size. This 8-bit

unit is called a byte. If we consider the various computer

- 10

words we can make out of all possible combinations of eight ~

bits, we find that there are 28=256 possible combinations.

We can then build a computer which will respond differently

to each byte which we present as an instruction. For

example, an instruction of all O's might mean stop, while

10101010 might mean increment a number by 1. Furthermore,

a particular byte might stand for one operation when used

with one model of computer and might stand for a very

different operation in another computer system. The important

point is that all computers execute instructions through this

binary "language" which is a combination of on-off states

represented by O's and lIs .

.~

'---.---.

~

~.

~

- 11

HIGH LEVEL AND LOW LEVEL LANGUAGES

As stated in the introduction, a computer must be pro­

grammed to perform calculations or to process information.

Programs are prepared in a "language" with precise rules

of grammar. Currently available computer languages fall

into one of two major categories: high-level or low-level

languages. Internally, computers perform various operations

according to the binary language described earlier. This

binary language is commonly called "machine language".

Machine language is at the lowest level of computer languages

and consists of groups of on and off states. A machine

language word is any combination of eight O's and lis, e.g.

01100100. As you can see, it is nearly impossible to tell

what a given machine language word means by simply looking at

the word. Furthermore, programming a computer in this fashion

is both time-consuming and tedious.

To simplify the programming process, some easier method

of entering and recognizing instructions is required. The

next step up in low-level languages then is an "assembly

language" which uses short mnemonic symbols that assist in

the definition of the instruction. An assembly language

translates simple commands, such as HALT or INCREMENT, into

the appropriate machine language instructions. But even this

form of programming is too cumbersome for many applications.

In assembly language, a program to print out "HELLO" on a

terminal may require as much as 50 steps. Furthermore,

- 12

individuals without a great deal of computer expertise often

find it difficult to translate problems into a computer

program at either the assembly or machine language level.

As a result, higher level languages were developed with

commands and rules of grammar which are easier to learn and

apply. Problem-oriented, high level languages include FORTRAN,

CaBaL, ALGOL, PLl, and a variety of other languages. These

high-level languages are translated into machine language

through a program called a compiler. Any language that must

be compiled or translated one or more times before it is

reduced to machine code is said to be a high-level language.

'-..../

'--.-/

~

~ '-

~

- 13

BASIC AND ITS USES

Most of the high-level languages mentioned in the

previous section were designed for use by special groups

comprised of relatively sophisticated computer users. Con­

sequently, most of these languages are somewhat difficult

to learn. However, as the computer moved from the design

laboratory into the university laboratory and then on into

business, home, and school usage, the need for an easy-to

learn, grammatically simple, English-language-based, program­

ming language grew. To answer this need, Professors John G.

Kemeny and Thomas E. Ker~z of Darthmouth College developed the

first version of BASIC in 1965. BASIC is a higher level

language which is easy to learn and which can be applied to

most computing problems.

In addition to being easy to learn, BASIC has a number

of features which make it useful for two very important

and common applications: time-sharing and interactive

programming. In BASIC, simple, English-language commands

are translated line-by-line as the program executes into

machine code through a program called an interpreter. This

interpreter makes it easy to interrupt the conversion process,

proceed to another task, and then return to pick up where

you left off. Consequently, a computer can be used to allow

multiple users running BASIC to "timeshare" a system. In

time sharing, the computer handles each user in some specified

sequence. The high speed of the computer, however, makes it

- 14

appear that all users are being handled simultaneously.

BASIC is also particularly well-adapted for use in

interactive programs which require continual user interaction

with the computer. Interactive programming allows the user

to continually update and revise a program based on inter­

mediate results. For complex problems involving a number

of parameters that may require changing before a solution

is reached, the interactive programming capability is a

powerful tool.

Because of these important features, the library of

programs written in BASIC -- many of them in the public

domain -- has expanded rapidly. Many complex business

programs, including inventory control, payroll, shipping

and receiving, and accounting, are available in BASIC.

There are programs written for computer-assisted instruction

(CAI) and for a wide range of interactive games in which

users compete with each other or with the computer in

simulations of a variety of situations and events.

In addition, the same computer system may be used to

streamline accounting procedures, control manufacturing

processes, regulate energy usage, or play games. Only the

BASIC program need be changed. With the introduction of

inexpensive, microcomputer-based, time-sharing systems (such

as the Cromemco Z-2 Educational Time-Sharing System), true

multi-user computer operation becomes available at only a

fraction of its cost five years ago.

~

,~/

~

~

/'~

- 15

1.2 A GLOSSARY OF TERMS USED IN 16K BASIC

ARGUMENT

An argument is an independent variable used with a

BASIC word whose value can be specified by the user to

instruct BASIC to perform a certain task. For example,

in the statement:

PRINT A, B

A and B are arguments to the BASIC word PRINT.

ASCII

This acronym stands for "American Standards Code for

Information Interchange". It is an industry standard used

to assign numerical codes (0 through 127) to 128 characters

used as letters, numbers, arithmetic operators, and various

.symbols. The ASC (X) function will return the ASCII equivalent

of any argument. A table of ASCII code is provided for

reference in the Appendix.

BASIC WORD

A BASIC word, commonly called an instruction, is an

alphanumeric set of characters which briefly describes the

operation to be performed by the computer. Some examples

of BASIC words are:

LIST

LEN

BINARY CODE

Binary code is defined as a code where every code element

is either a 0 or a 1. Computer instructions and data

~

PRINT

STOP

ON ERR

RND

- 16

for most microcomputers consist 'of unique, 8 bit binary

codes.

COMMAND

A command in BASIC is an instruction to the computer

which specifies an operation to be performed. In contrast

to a BASIC statement (see the Statement definition), commands

are executed immediately. Commands are used primarily to

manipulate or execute a program once the program has been

entered.

A powerful feature of Cromemco l6K BASIC is the ability

to use most commands as statements. As such, they may be

given line numbers ana included in the body of the program

for execution while the program is running.

CURRENT PROGRAM

The current program is any program with which the user

is currently interacting. when l6K BASIC is entered, no

program is current. Should the user enter text to create

a new program, this program becomes the current program.

If the user calls a saved program from system memory, that

program becomes the current program. When the user edits

a program, it remains the current program.

'----../

'~J

'----/

~

~

~

- 17

DATA

The term data is used in two ways. Strictly speaking,

any information contained within memory or control logic is

binary data. Whether this data becomes alphanumeric characters

or control information depends upon the program in use.

In the other sense, data is used to refer to numerical

or string information. In BASIC, this numerical or string

information is listed in a DATA statement.

DEFAULT

With certain BASIC words, an argument may be added

optionally to control a certain function. If no argument

is given, the instruction defaults or reverts to a value

already programmed into the BASIC interpreter. For example,

the default value for the statement line

RENUMBER

is la, la in Cromemco BASIC. This default value for RENUMBER

will produce automatic line renumbering starting with line la

and numbering consecutive lines by increments of la, (e.g. la,

20, 30, 40). To change this default value, the BASIC word

must be followed by an argument. For example, the statement

line

RENUMBER 5,5

will provide automatic line renumbering starting with line 5 and

continuing by increments of 5 (e.g. 5, la, 15).

- 18

DISK STORAGE

A disk is a computer memory device which is used to

store information. Disks are typically used in place of

main memory when large amounts of information must be stored.

A disk is similar in appearance to a phonograph record.

Most microcomputer systems currently offer disk storage

capabilities through either large floppy disks or through

mini floppy disks. The floppy and mini floppy terms refer

to the two different sizes (8" and 5" respectively) of

the flexible plastic disks used with the disk assemblies.

EXPRESSION

An expression is defined as any combination of variables,

constants or operations which is evaluated as a single value

or logical condition. For instance, in the statement:

10 LET A = (B*C) + (A*D)

the (B*C) + (A*D) operation, which is equated with variable A,

is interpreted as an expression. In the statement:

10 IF A = B THEN GOTO 250

the logical comparison A = B is called an expression.

FIRMWARE

Firmware is the middle ground between hardware and software.

This term is generally applied to specific software instructions

that have been 'burned in' or programmed into ROM. For example,

the BASIC interpreter might be considered to be firmware.

FLOATING POINT MODE

Floating point mode refers to a method of computer

calculation in which the computer keeps track of the decimal

"-./

, -..-/

"-./

~

~

- 19

point in each number. In 16K BASIC, three formats are used

to define variables: Integer, Long Floating Point, and Sh~~~

Floating Point. In the Long Floating Point mode, numerical

values are allowed up to 14 digits. In the Short Floating

Point mode, numerical values are limited to 6 digits. The

default value in Cromemco BASIC is the Long Floating Point

(LFP) mode.

HARDWARE

In comparison to 'firmware' and 'software', hardware

represents the actual metal (or "hard") elements of a

computer system. Items such as printers, terminals, and

the computer itself are considered to be hardware.

INTEGER

An integer is simply defined as a whole number, positive

or negative. The following numbers are examples of integers

and non-integers:

INTEGERS

3

10

-5

NON-INTEGERS

3.14159

.66666

2/3

~

INTEGER MODE

Integer mode is a format used to define variables in

which one or all variables within a given program are set to

integer values only.

- 20

INTERACTIVE

An interactive device is one used to achieve direct

person-to-computer communication, and vice versa. The tele-

type and CRT terminals are the best-known examples of

interactive terminals, although many variations are possible.

I/O (INPUT, OUTPUT)

/'
'--....-/.

The I/O initials stand for Input and Output. I/O is

the transfer of data between the computer system and an

external device. Devices such as CRT (Cathode Ray Tube)

terminals,TTY (teletypewriter) terminals, disk drives,

and cassette tapes are examples of devices that accept input

data from the user, another peripheral device, or from the

computer memory, and that output data from the computer. Data

displayed on a terminal may be output from a disk or a cassette

or the data may be output from computer memory or from a

peripheral memory device.

MATRIX

A matrix is an array of quantities in a prescribed form.

For example, the array:

'.--..-/

3

1
-3

2

4

4

o

6

5

is a matrix with three rows and three columns. A matrix with

m rows and n columns is written:

~

~ all

a2l

aml

a12

a22

a13

a23

...aln

... a2n

... amn

- 21

,,~

~

The individual entries in the matrix are called elements.

For example, the quantity a .. in the above matrix is the
lJ

element in row i and column j. Subscripts used to indicate

elements always denote the row first and the column second.

Cromemco BASIC permits the user to define one, two, or three

dimensional matrices. A two (i.e., M ..) or three (i.e., M. 'k)lJ lJ

dimensional matrix is commonly called a table. A one dimensional

matrix -- a matrix with n columns but only one row -- is com-

monly called a list. For example, the matrix:

(3, -1, 5, -8)

is a list (or a matrix) with one row and four columns.

The respective formats for declaring the number of rows

and columns in one, two, and three dimensional arrays are:

10 DIM A(n)

20 DIM B(n,m)

30 DIM C(n,m,r)

where n, m, and r are integers.

Note that l6K BASIC programs execute significantly faster

if variables used for subscripting (and/or loops) are declared

as type INTEGER. Also, using the ~th element of matrices (and

strings) can save memory space.

MEMORY

The computer memory is used to store information,

including programs and data, for future use. Microcomputers

typically use semiconductor memories, of which the two most

- 22

common types are random-access memory (RAM) and read-only

memory (ROM). From a hardware perspective, memories consist

of an array of bistable, individually addressable elements

which each represent a single binary digit. Information can

be stored either in "main memory", which commonly consists of

RAM or ROM, or in external storage devices, which include

disks, magnetic tape, and magnetic drums.

PERIPHERAL DEVICE

Peripheral devices are units which are used in conjunction

with a computer but which are external to the computer.

'Peripherals' refers to devices such as printers, plotters,

terminals, disk storage devices, etc., which can be connected

to the computer. The computer is assumed to be the central

unit and peripherals are merely support devices.

PROGRAM

A computer program is a set of commands arranged into

statement lines. The commands are used to instruct the com­

puter to perform specified operations in a certain order.

Programs are designed and written to solve a wide range of

problems and are used in applications as varied as process

control, data reduction, telephone systems, mathematical

analysis, games and stock market transactions.

PROM

This acronym stands for Programmable Read-Only Memory.

PROMs consist of an array of memory cells that can be fixed

~

~

~

~

~.

~

- 23

in certain patterns by the application of higher-than-normal

voltages. These memories are said to be non-volatile; that

is, when power is withdrawn the programmed pattern remains.

Recently, EPROMs, or erasable PROMs, have appeared and

have found industry-wide usage. EPROMs may be erased by

exposure to ultraviolet light, and then re-programmed. The

Cromemco Bytesaver is designed to program such EPROMs.

PROTOCOL

Protocol is a set of conventions on the format and

content of messages to be exchanged between two logical

devices. Most often, differences in timing account for

failure of devices to communicate. For example, a certain

signal might of necessity be present to enable an I/O request

to a microprocessor. This convention is part of the micro­

processor's protocol. To match a computer to a terminal,

one must know the mutual 'handshake protocol'.

RAM

RAM stands for Random Access Memory, or read-write memory.

In contrast to PROMs, read-write memory can be changed as well

as being read. Some RAMs (known as "dynamic") retain data for

only a fraction of a second and must be 'refreshed' constantly

to retain data. All RAM is volatile and must have power

applied to retain these patterns.

- 24

ROM

A ROM is a Read-Only Memory device that is used for

storing fixed information. This information is "burned in",

or programmed, at specific locations when the ROM is

manufactured. A ROM cannot be written into during operation.

Any ROM that can later be altered is a Programmable Read­

Only Memory (see PROM). ROM-family memories, once burned,

retain their data regardless of power contingencies.

SOFTWARE

Software is a term used to refer to the programs,

languages and procedures used in a computer. For example,

the 16K BASIC language, and any BASIC program are identified

as software.

STATEMENT

A statement in BASIC is an instruction to the computer.

A statement is generally defined as any line in a BASIC

program which is preceded by a number. For example:

100 A = B*C

is defined as a statement. Typically, a statement can contain

a maximum of 132 characters.

A powerful feature of Cromemco 16K BASIC llithe ability

to use most statements as commands. As such, they may be

used without line numbers and executed immediately. This is

very useful for debugging programs.

.~

'--../

'--../

~

~,

~

- 25

STATEMENT LINE NUMBER

All lines in BASIC begin with a line or statement

number. For example:

la PRINT A, B

includes the statement number la. Line numbers can be

assigned manually or through the AUTOL command and may be

any integer from 1 through 99999. All BASIC lines have a

unique number which is used to identify lines which require

modification or deletion from the program.

STRING

A string is a sequence of alphanumeric characters, spaces,

and special characters. In 16K BASIC, strings are enclosed

within quotation marks. Examples of valid strings include:

"CROMEMCO 16K BASIC"

"12345"

"THIS PROGRAM PRINTS SQUARE ROOTS"

The statement:

100 PRINT "CROMEMCO 16K BASIC"

will output the string

CROMEMCO 16K BASIC

STRING VARIABLE

A string variable may be used when the user wishes to

assign a string value to a variable. String variables consist

of a single letter of the a~phabet (A through Z), or a single

In the statement:

- 26

letter and one digit (0 through 9), followed by a dollar

sign ($). Examples of valid string variables include:

B$

C3$

D8$

VARIABLE

A variable is a quantity that can assume anyone of

a given set of values. In 16K BASIC, variables are defined

by a single letter (A through Z) or a single letter followed

by one digit (0 through 9). Examples of legal variable

names include:

A

Al

C

CO

Variables represent numeric values.

20 A = 8 + 2

A is the variable and 8+2 or 10 is the value of A. A new

value can be assigned to A at any subsequent point in a

program.

'---../

'----.-/

~

~

- 27

1.3 PROGRAMMING FORMATS FOR 16K BASIC

Cromemco 16K BASIC includes about 60 BASIC instructions.

Some examples of common BASIC instructions are listed below:

LIST FRAction

GO to SUBroutine RaNDom number

~

~

In each case, the capitalized letters form the BASIC

instruction.

Program Directive Statements

One class of BASIC words consists of Program Directive

Statements. These statements instruct the computer to

perform operations within the context of the program itself.

The instructions contained in a statement line are not

executed until the program is run.

Several different formats are used for Program Directive

Statements. For instance, if the computer system encounters

the statement line:

30 INPUT A

in the course of program execution, it will type a question

mark (called in this context a 'prompt') onto the terminal

and await a response from the user. The proper response is

a numerical value. Any response other than a number will

cause the computer to issue an error message.

- 28

The computer assigns the input value to A.

When the computer executes the statement line:

40 PRINT "CROMEMCO 16K BASIC"

it prints the text enclosed within the quotation marks onto

the terminal or other file device. Variables and string

statements need not be enclosed within quotes. To print

the value of variable A onto the terminal, a simple:

50 PRINT A

instruction is all that is needed.

Other Program Directive Statements provide elaborate

routing of prog~am control and extensive manipulation features.

A complete description of each program statement is given in

Section 2.1 and 2.2.

Program Command Instructions

A second class of BASIC words, called Program Command

Instructions, controls the execution of entire programs.

With these commands, a program may be RUN, STOPped, LISTed

to a terminal or other file device, ENTERed into user memory,

CONtinued, RENUMBERed, or otherwise manipulated.

These instructions are used when a current program is

active, as opposed to the text input mode in which no specific

program has been created or called from memory. The text

~

.~

'---../

~

~~,

~

- 29

input mode applies when the computer system is first turned

on, or when a previous program has been STOPped or SCRatched.

The double "greater than" marks (») are used to indicate

that the computer is ready to accept new input. If the

computer is ready to accept program input or directives,

the "»" symbols will be printed flush with the left margin

of the printer or CRT screen.

After the » symbol has been generated by the computer,

a line or program command instruction may be typed in on the

terminal. For example, the following command instructs the

computer to list out the current program:

» LIST

As a rule, this will be the format for most Command

Statements. The LIST, RENUMBER, and AUTOL commands may

also be used with delimiting line numbers. Consult the

definition of a given BASIC command to determine the correct

format.

Programmed Functions

Cromemco l6K BASIC includes a number of pre-programmed

functions which perform common, frequently used calculations.

The available functions include arithmetic, trigonometric,

boolean, string handling, matrix handling, assembly

language subroutine, and system functions. In addition,

Cromemco l6K BASIC permits the user to define up to 26

- 30

functions. For example, one of the arithmetic functions ~

available in BASIC is the square root of a numeric expression.

The format for this function is:

10 A = SQR (X)

where X is any numeric expression. This statement line

instructs the computer to assign the value equal to the

square root of X to the variable A.

String Control Statements

Cromemco 16K BASIC manipulates alphabetic information

through strings and string variables. A string is defined

as any combination of characters, including letters, numbers,

special characters and spaces, but excluding quotation marks.

A string literal is defined as any string enclosed in

quotation marks. For example, in the following statement:

10 PRINT "THIS IS A STRING"

the phrase "This is a string" is a string literal.

String variables are also used in Cromemco BASIC. A

string variable is defined as any letter A through Z followed

by a dollar sign or any letter and any number ~ through 9

followed by a dollar sign. The following are valid string

variables:

A$

F2$

Z$

------./

------./

~

/~

- 31

Any string can be assigned to a string variable. There are

a number of instructions available in BASIC which facilitate

string manipulation. Descriptions of these instructions are

included in the following sections.

Printing Formats

Cromemco 16K BASIC also provides advanced print

formatting capabilities with format control commands such

as PRINT, TAB, SPC, and PRINT USING. The PRINT USING

statement, in particular, allows the user to define special

formats for the output of numeric data. This format may
.

specify the number of digits following a decimal point,

the printing of a dollar sign before a number, spacing

between numbers, and a variety of other formatting options.

Numerical Representation in 16K BASIC

In Cromemco BASIC, any or all variables may be set to

integer, short floating point, or long floating point mode.

The default mode is the long floating point mode.

In the long floating point (LFP) mode, numbers of up

to 14 digits are represented in a decimal format (e.g.,

3.1415926543287) . In the short floating point (SFP) mode,

,r--,

numbers are limited to 6 digits (e.g., 3.14159).

If there are more digits than the mode allows in the

expression of a numerical value, the number is represented in

- 32

scientific notation. For example, in short floating precision:

~.~~~~l becomes lE-~5

12340000 becomes 1.234E~7

To set all variables within a program to a given mode,

one of the following commands is given at the beginning of

the program:

'--.-/

IMODE

LFMODE

SFMODE

(Integer Only)

(Long Floating Point)

(Short Floating Point)

In addition,any given variable may beformatted to one

of these modes through similar statements.

For example:

10

INTEGER A

20

LONG B

30

SHORT C

In this example,

the variable A isin integer-only mode,

the variable B is

in long floating point mode,and the

variable C is in short floating point mode.

Long floating point numbers occupy 8 bytes, short

floating point occupy 4 bytes, and integer numbers occupy

2 bytes.

These specific mode set instructions (i.e., INTEGER A)

override the general mode set instructions, so care should

be taken in the use of these statements.

---/

~

~

/.--.....,

~

- 33

For example, in the following program the SFMODE is set but

the variable A is set to INTEGER mode within the program:

SFMODE

10 INTEGER A

20 A=2.333

30 PRINT A

40 END

RUN

2

40 END

In this example, statement 10 overrides the general SFMODE

command. If statement 10 is deleted, the program will run

as follows:

SFMODE

20 A=2.333

30 PRINT A

40 END

RUN

2.333

40 END

- 34

Special note should be made of the two types of constants

in 16K BASIC; floating and integer. When a constant which ~

is less than 10,000 is entered without a decimal point, it

is understoood to be an integer constant. For example:

10 A = 2/3

20 PRINT A

30 END

RUN

f5

30 END

The f5 is the result of integer arithmetic being performed

on the expression.

A decimal point can be used to override the integer

mode. In that case, the program above can be written as

follows:

10 A = 2./3.

20 PRINT A

30 END

RUN

.66666666666667

30 END

This is the result of floating point arithmetic. All

integers greater than 10,000 go to the defined mode

(i.e., short floating point or long floating point).

A simple rule to follow is "when in doubt use the decimal

point in constant representations."

Also, note that programs will execute significantly

faster if variables used in loops and/or for subscripting

are declared as type INTEGER.

or

~

'---../

~

~'-

~

- 35

HEXADECIMAL NUMBERS

In Cromemco l6K BASIC, a hexadecimal number may be

used anywhere a constant is called for (i.e., expressions,

INPUT statements, etc.). The format for hexadecimal numbers

is:

%h%

where h is any hexadecimal number. For example: if h=~~F~,

then this number can be represented in l6K BASIC as

%~~F~%. The user must supply the leading and trailing

% sign.

- 36

ARITHMETIC OPERATIONS

A number of special characters are used in l6K BASIC

to indicate arithmetic and relational operations. These

characters, along with their definitions, are listed below:

''-----/'

Character

+

t or **

/
*

+

=

<

< =

>

> =

< >

Defintion

Plus Sign (used to indicate

a positive number)

Minus Sign (used to indicate

a negative number)

Exponentiation

Division

Multiplication

Addition

Subtraction

Equal

Less Than

Less Than or Equal To

Greater Than

Greater Than or Equal To

Not Equal

'-----/'

The last six characters represent relational operators

which are used to compare two expressions. The first seven

characters represent arithmetic operations.

'---./

,..----.,

~

- 37

Arithmetic operations in a numeric expression are

performed, according to the priority of the operation, from

left to right. All operations enclosed within parentheses

are performed first. When multiple sets of parentheses

appear, the operations in the innermost set of parentheses

are performed first, followed by the operations in the next

set of parentheses, and so on until the operations in the

outermost set of parentheses are evaluated. Following

evaluation of expressions enclosed in parentheses, arithmetic

operations are performed in the following order: plus and

minus signs, exponentiation, division and multiplication

(these operations have the same priority), and addition and

subtraction (these operations also have the same priority).

When operations have the same priority, calculations are

performed from left to right within the expression. The use

of parentheses can alter the order in which operations are

performed since the parentheses override the normal left to

right priority.

Example:

(X + Y - (Zl * Z2))/2

In the example above, the value of Zl*Z2 is calculated

first. Then the value of X is added to the value of Y and

the value of Zl*Z2 is subtracted from this value. The

total is then divided by 2.

- 38

BOOLEAN OPERATORS

Four Boolean operators, AND, OR, NOT, and XOR, are

used in Cromemco l6K BASIC. The result of each of these

operations is dependant on the value(s) of one or two logical

variables. A logical variable is one which can take on one

of two values: 1 (=true) or 0 (=false).

AND

The AND operator compares two logical values and if

both are 1 returns a result of 1. If both values are not

1, then the result is ~.

OR

The OR operator compares two logical values and if

either or both are equal to 1 then the result is 1. Otherwise,

the result is ~.

XOR

The XOR operator returns a ~ if the logical values

are identical and a 1 if the logical values are not identical.

NOT

The NOT operator returns the complement of any logical

value. In other words, if the logical value is 1, the NOT

operator returns a~. If the logical value is ~, a 1 is

returned.

Note: All variables which are not equal to zero are

considered to be "true" (=1) when used with Boolean operators.

'---.../

,
~

~

~.

~

~

- 39

1.4 LOGGING ON WITH 16K BASIC

This section outlines the steps required to input and

run a BASIC program on a computer system. The most common

input devices are cathode ray tube (CRT) terminals and

teletypewriters (TTY). When using the Cromemco Z-2 micro­

computer system, either device can be plugged directly into

the I/O connector sockets in the rear of the machine.

(Note: On TTY terminals, there is a switch which should

be set to LINE.) The Cromemco ZPU provides power-on jump

circuitry to begin automatic program execution when power

is turned on. The method used to enter 16K BASIC is

dependent on the configuration of your machine. The next

five pages describe how to enter 16K BASIC from DISK, PROM,

and Paper Tape.

Note: When BASIC is loaded into a minimum DISK system

configuration with 32K bytes of memory, the space available

to the user should be 3.8K bytes. The other 28.2K bytes

are occupied by BASIC, CDOS I/O routines, etc. See notes

at the end of the manual for ways to increase the user space.

(Appendix C: Changing the Number of I/O Channels)

NOTE: It is important to remove disks from the disk drive

before turning the power off or on. This will eliminate the

possibility of stray bits being written on the disk as the

system is powered up or down.

- 40

CROMEMCO 16K BASIC FROM DISK

Memory Requirements:

1. at least 32K RAM starting at location ~

System Set Up:

1. set the POWER ON JUMP switch on the ZPU board to

C~~~H

Switch A15=1

IS"

_0 2-

11

A14=1
14·

- 2
I'?>

11
A13=~-'7

'-
11

A12=~-2 12.

2. set the four switches on the 4FDC board as follows

switch l='OFF'

~

11 2='OFF' ,---/

11 3='ON'

11 4='OFF'

Method:

1. insert the CROMEMCO 16K BASIC disk in drive A (on

the left).

2. depress the return key on the console several times

so that CDOS can determine the baud rate of your

terminal.

3. CDOS will return with a prompt fA.}

4. type {BASIC} and a {carriage return}

5. CROMEMCO 16K BASIC will respond with a prompt {»}

to indicate that it is ready to accept a command.

~

~

~

- 41

CROMEMCO 16K BASIC FROM PROM

Memory Requirements:

1. 16K PROM starting at location 8~~~H

2. at least 8K RAM starting at location ~

System Set Up:

CROMEMCO 8K BYTESAVER & 8K BYTESAVER 11 PROM boards

1. turn program power switch 'OFF'

2. turn program enable switches 'OFF'

3. plug the 16 CROMEMCO 16K BASIC PROMs into the

two boards in numerical order

board one - 8~~~ into PROM socket ~
84~~ into PROM socket 1
etc.

board two - A~~~ into PROM socket ~
A4~~ into PROM socket 1
etc.

4. set LOGICAL ADDRESS BLOCK SELECT to 8~~~H &

A~~~H

BYTESAVER jumper wires:

board one - A15 HI, A14 LO, A13 LO
board two - A15 HI, A14 LO, A13 HI

BYTESAVER 11 switches:

board one - 15=1, 14=~, 13=~
board two - 15=1, 14=~, 13=1

~

16KPR board

1. set LOGICAL ADDRESS BLOCK SELECT to 8~~~H

(switch 15=1, switch 14=~)

2. plug the 16 CROMEMCO 16K BASIC PROMs into the

board in numerical order

8~~~ into PROM socket ~
84~~ into PROM socket 1
etc.

- 42

All systems

1. set jump start address on the ZPU board to 8~~~H
~

Switch
11

"
11

A15=1
A14=~
A13=~
A12=~

2. select bank ~ on the PROM board (switch 8 on)

Method:

1. depress the return key on the console several times

so that CROMEMCO l6K BASIC can determine the baud

rate of your terminal.

2. CROMEMCO l6K BASIC will respond with a prompt {»}

to indicate that it is ready to accept a command.

---../

'--./

- 43

~
CROMEMCO 16K BASIC FROM PAPER TAPE

Memory Requirements:

1. 16K of RAM starting at location 8~~~H

2. at least 8K of RAM starting at location ~

System Set Up:

For a CROMEMCO Z-l or Z-2 computer with the RDOS monitor

on a 4FDC board

l.set the power on jump to C~~~H(monitor)

2.

set all of the 4FDC switches'OFF'

3.

modify the'PAPER TAPE LOADER'instruction at

25H from JP E~~8H to JP C~~~HIn all other cases use the CROMEMCO Z-8~ monitorl.

set the power on jump to E~~~H(monitor)
~.

2.

use the'PAPER TAPE LOADER'as provided

.Method :

1. enter the 'PAPER TAPE LOADER' supplied with your

CROMEMCO 16K BASIC at location ~

(type {SM~} then enter the program)

2. mount the paper tape in the reader

3. start the program execution at location ~ {G~}

4. turn on the paper tape reader

NOTE:
If you are using a teletype and the program exits
to the monitor while the tape is being read in,
this means a checksum error has been encountered.
To correct:

a. stop the paper tape
b. back the paper tape up about 2 feet
c. start the program execution at location ~

~ d. turn on the paper tape reader

- 44

(It is not necessary to start reading the
program in from the beginning of the tape as
loading address information is stored on the
tape.)

5. after the CROMEMCO l6K BASIC program has been loaded,

shut off the paper tape reader.

6. the 'PAPER TAPE LOADER' will return control to the

monitor.

7. start program execution at location 8~~~H {G8~~~}

8. depress the return key on the console several times

so that CROMEMCO l6K BASIC can determine the baud

rate of your terminal.

9. CROMEMCO l6K BASIC will respond with a prompt {»}

to indicate that it is ready to accept a command.

~

--./

'---/'

~

,r--...•

~

- 45

AUTOMATIC STARTUP AND PROGRAM EXECUTION FROM CDOS

A very powerful feature of the Cromemco Disk Operating

System (CDOS) is the ability to enter directly into an

application program when powering up the computer. This is

especially useful for the inexperienced user as there is no

need to deal with any of the commands which are used to load

and execute a program.

If, for example, the user wants to execute the BASIC

program 'START.SAV' automatically when CDOS is entered,

the following steps should be followed:

1. Make sure that there is a copy of the batch command

file '@.COM' on disk A.

2. Save the BASIC program you want RUN in a file (in

this example we are using 'START. SAV') . The program must

be SAVEd (not LISTed) in order for this to work!

Our program for this example is:

l~~ REM THIS IS MY APPLICATION PROGRAM!
ll~ A = 5
l2~ B = 1.0'

l3~ PRINT "THE ANSWER IS: "; A*B
l4~ END

3. Using the editor, create a file named 'STARTUP.CMD'

on disk A. Note that this must be named 'STARTUP.CMD' as

this is the file name that CDOS looks for. In this

example, the command file should contain the line:

BASIC START.SAV

Then, when CDOS is entered, the batch command will call

BASIC which will RUN the saved program 'START.SAV'.

- 46

4. When the computer is turned on and COOS is entered

(you have to hit the carriage return several times), our

example will output the following:

CROMEMCO COOS VERSION ~~.2~

A. @ STARTUP
BATCH VERSION ~~.~3

A.BASIC START.SAV

COOS l6K BASIC, VERSION 5.~

THE ANSWER IS: 5~

14~ ENO

~

-.--/

~

~

r---,

~

- 47

ENTERING A NEW PROGRAM

When beginning a new program~ it is advisable to type SCR,

which is a scratch command, to clear the user area of any stray

statement lines that may be present. Of course, when power

is applied and the system is "brought up" for operation, no

program is immediately active. However, typing SCR each time

a new program is to be input is a good programming habit.

When typing a new program, the user must be certain to

begin each line with a line number (which may be any integer

from 1 to 99999) and end each line with a carriage return (CR).

The lines may be entered out of numerical sequence, such as:

20 A = 2

30 B = 4

15 DIM A$ (50)

25 DIM B$ (50)

l6K BASIC will rearrange these lines to:

15

DIM A$(50)

20

A = 2

25

DIM B$(50)

30

B =4

Before running a program,

the user should LIST the

program on the terminal and check for obvious typing errors.

Corrections to a program can be made by retyping lines

containing errors, by deleting lines or by adding lines. A

line containing errors may be rewritten by retyping the line

number and the corrected text.

In the example above, if you wish to change the 4 in

line 30 to an 8, you would type:

30 B = 8

- 48

When the program is listed, the computer will automatically

replace the original line30 with the corrected version.Thus,

the program will be relisted as

follows:

»

LIST

15

DIM A$(50)

20

A = 2

25

DIM B$(50)

30

B =8

Once a program has been written and edited, it can be

executed with the RUN command.

»10, PRINT "A PROGRAM"

»20 PRINT "TO DEMONSTRATE"

»30 PRINT "THE RUN INSTRUCTION"

»RUN

A PROGRAM

TO DEMONSTRATE

THE RUN INSTRUCTION

~

,
~

To add lines to a program, you simply type a new statement

with a line number which falls between the numbers of existing

statements in the program. Consequently, it is good programming

practice to increment by 10 when numbering statement lines in

case statements must be inserted later. If the number of lines

to be inserted between statements exceeds the range of available

line numbers, the RENUMBER command may be used to reassign numbers.

~

~

~,

~

- 49

The format for the RENUMBER instruction is:

»RENUMBER X,Y

where X is the starting number for the lowest-numbered

statement line and Y is the increment. For example, we

might renumber the lines in the following program to start

with 10 and increment each number by 10:

5 A = B

6 PRINT A

10 B = B*B

12 PRINT B

13 END

» RENUMBER 10, 10

The program would appear as follows:

10 A = B

20 PRINT A

30 B = B*B

40 PRINT B

50 END

To stop execution of listing of a program, or to

interrupt any task being performed, press and release the

ESCape key. The computer will revert to command mode.

When you have finished using l6K BASIC, you may pass control

to the Cromemco Monitor of CDOS (or the Resident Operating

System) or you may simply turn off the machine. Before

- 50

"logging off", be sure that any program you wish to keep

is saved in "hard copy" either on paper tape, floppy disk,

cassette tape, or some other permanent format. When power

to the system RAM memory is removed, the memory contents

are lost.

NOTE: It is important to remove disks from the disk

drive before turning the power off or on. This will eliminate

the possibility of stray bits being written on the disk as the

system is powered up or down.

'------../

'--.../

~

~

~

~

- 51

1.5 STEPPING THROUGH A BASIC PROGRAM

Like other computer languages, l6K BASIC has its own

format, rules of grammar, and user protocol. The best way

to learn BASIC is to sit down in front of a working computer

system and try each command. This section presents a

short program that will help introduce you to the BASIC

language.

Once you have plugged in your terminal, switched the

power on, and loaded BASIC (see Section 1.4), the computer

should print out the BASIC prompt (»).

The "»" symbol typed at the left is a 'go ahead'

signal from the computer. This signifies that the computer

is ready to accept program commands. At this point, the

user may begin inputting BASIC statements. Note that after

each statement is input the user must hit carriage return (CR).

The program we will be inputting as an example is a

short program which calculates the average of five numbers.

We begin by stating a line number (see STATEMENT LINE NUMBER

in the Glossary for more information about statement lines).

You may enter line numbers individually by typing any number

from 1 to 99999 after the » marks.

- 52

For example, you may enter the following line:

» la PRINT "BEGIN BASIC PROGRAM" (CR)

If you wish to let the computer take care of the line

numbering after the 'ready' marks, type:

» AUTOL la, la (CR)

and the computer will respond with:

» la

This is the first line number. Further line numbers will

increment by la. (To change the AUTOL format, see the AUTOL

command definition.)

Next, type in your first instruction:

'--../

la LET N = 5 (CR)

When the program is RUN, this instruction will assign a

value of 5 to the variable N. BASIC will remember this value

and it will remain the same until redefined by the user or

by an algorithm within the program. BASIC will also under­

stand the statement above without the LET, as in:

T

~

la N = 5 (CR)

This is called an 'implied LET' and is a characteristic

of advanced versions of BASIC. BASIC will also disregard

spacing of characters in statement lines. Thus, for example,

the statement:

la LET N = 5 (CR)

is equivalent to the statement:

la LET N=5 (CR)

'--------/

~

- 53

At this point, we have the following lines on the terminal:

AUTOL 10, 10

10 N = 5

BASIC is waiting for our next instruction. Type in:

20 INPUT A: INPUT B: INPUT C: INPUT D: INPUT E (CR)

with this long statement line, we have created a set of

commands that will ask for five numbers (inputs A,B,C,D and E)

when the program is actually run. In l6K BASIC, more than one

statement line can be packed behind a line number. These

statement lines must be separated by colons. Packing statement

lines saves memory space.

Next, we enter the statement line:

/-----., 30 X = (A+B+C+D+E)/N (CR)

This statement line assigns to variable X the value of

the sum of the five input numbers divided by N. The variable

X is therefore the arithmetic mean, or "average, of these five

values. We defined N as 5 previously. If we do not define N,

then it is assumed that N = O.

Naturally, we'll want to look at X to see what it is.

We type in:

40 PRINT X (CR)

~

which instructs BASIC to print the value of X when the program

is run. What do we have so far? Our program, as listed below,

- 54

looks ready to run.

AUTOL 10, 10

10 N = 5

20 INPUT A: INPUT B: INPUT C: INPUT D: INPUT E

30 X = (A+B+C+D+E)/N

40 PRINT X

l6K BASIC does not require an END or STOP statement

line as the last statement line, but it is good programming

practice to include one. So we can add the following state­

ment to our program:

"------'"

50 END (CR)

If we wanted to run through the program a number of

times, finding means for many groups of five numbers, we

might change line 50 to:
~

50 GOTO 10 (CR)

This would instruct the computer to return to line 10

and re-execute the program, finding the mean of five new

numbers each time. To escape from such a loop, or from a

program during its execution, press the escape key on your

terminal or teletype keyboard and release it.

Now let's run the program. After statement line 50 is

typed in we hit the ESC (escape) key to get out of the autoline

line numbering. Then we hit carriage return and type in:

RUN (CR)

'---/

-~

~

~

- 55

This command instructs the computer to begin execution of

the program. When the first INPUT command in line 20 is

encountered during program execution, a question mark (called

a prompt) will appear on your terminal, as indicated below:

RUN

?

This prompt indicates that the computer is waiting for you

to input a number for the first variable in the INPUT

statement. We therefore type in:

?17

and BASIC responds with:

?17

?

The second prompt indicates that the computer is

waiting for a value for INPUT B. In fact, we need to enter

values for the next four INPUT variables. Once we input

these values and hit carriage return, the computer will

complete program execution and print out the value of X,

as shown below:

RUN

?17

?25

?12

?18

?13

17

50 END

- 56

Almost instantly, the BASIC program has calculated and

printed the average of the five numbers we input. This

average is equal to 17. At this point, we might want to do

a little formatting to change the way in which the results

are printed out. We LIST the program again to se€ what we

have to work with.

LIST

10 N = 5

20 INPUT A:INPUT B:INPUT C:INPUT D:INPUT E

30 X = (A+B+C+D+E)/N

40 PRINT X

50 END

We can start by inserting some statement lines within

the present text of the program. At any time, lines can

be inserted between present statement lines by using a

number which falls between two consecutive statement line

numbers. For example, a line numbered 15 will be inserted

between statement number 10 and statement number 20. When

a program is RUN or LISTed, the new statement lines are

automatically inserted into the proper space in the

hierarchy.

We decide to add spaces between lines to make reading

easier. We add:

15 PRINT

16 PRINT

35 PRINT

36 PRINT

,---./

,
~

'-----/

~

- 57

Inserting a PRINT instruction in a statement line

without text to be printed generates a linefeed. To save

time, you may use an @ symbol in a statement line instead

of PRINT. At this point, you'll want another look at the

program. BASIC will have sandwiched the new statement

lines into the old text as shown below:

10N = 5

15

PRINT

16

PRINT

20

INPUT A:INPUT B:INPUT C:INPUT D:INPUT E

30

X =(A+B+C;-D+E)/N

~

35PRINT

36

PRINT

40

PRINT X

50

END

Now type RUN. According to our program, the computer

will skip two lines after you type in RUN and then wait

for you to type in 5 numbers. Once these numbers are

input, the program instructs the computer to skip two

more lines and then type the result. This output appears

on the terminal as follows:

~

- 58

RUN

?22

?14

?16

?20

?28

20

50 END

Many more variations may be added. For example, the

statement line:

5 PRINT "A PROGRAM TO CALCULATE THE AVERAGE OF 5 NUMBERS"

will give you a title for this program. You might also

replace line 40 with:

40 PRINT "THE MEAN OF THESE NUMBERS IS "iX

To rewrite any line, just retype the line number and the

statement text. The rewritten line will automatically replace

the old line. Variables do not need to be within quotation

marks to print.

Endless time could be spent examining all options, but

the best way to learn BASIC is to tryout everything that

catches your interest. Several hours of practice with the

BASIC instructions will give you a solid grounding in BASIC.

Refer to Chapters 2 and 3 for a description of the statements,

commands, and functions available in Crornerncol6K BASIC.

~

'----/

~

~

~

~

- 59

2.0 16K BASIC PROGRAM INSTRUCTIONS

Brief descriptions of each of the program statements and

commands included in Cromemco 16K BASIC are presented in the

following sections. These descriptions cover the purpose

or use of each instruction, a general format for each, and

specific examples.

All program instructions described in Sections 2.1 and

2.2 must include a line number if they are to be used as state­

ments. Although these line numbers are not included in the

general form of each instruction described in these sections,

it is assumed that the user will precede each statement with

a number.

All instructions described in Sections 2.1, 2.4, 2.5, and

2.6 may be used as statements (preceeded by a line number,

for execution at run time) or commands (used without a line

number, for immediate execution--useful for debugging and

testing) .

All instructions described in Section 2.2 can only be

used as statements.

All instructions described in Section 2.3 can only be

used as commands.

- 60

MULTIPLE STATEMENTS

STATEMENT : STATEMENT : STATEMENT

Cromemco 16K BASIC allows multiple statements per

line with a few exceptions and restrictions. The number

of statements which may be placed on a line is limited

only by the length of the line. User defined functions

(DEF FNs) and DATA statements must be on a line by them-

selves. The statements and commands listed below may be

part of a multistatement line but they must be the LAST

statement on the line, i.e., no other statement may fol-

low on the same line.

"-/

RUN
GOTO
FOR
ENTER

REM
GOSUB
ON
DELETE ~

See the IF - THEN command for an example.

~

SGNVWWOJ GNV SiliNHW~iliViliSHiliOgSV G~SD ~g NVJ HJIHM SNOIiliJD~iliSNI lOG

19 -

- 62

DEG

This command sets the DEGrees mode for trigonometric

calculations.

The general format for this command is simply:

DEG

~

'-....-/

'---.../-

~

~

~

- 63

DELETE

The DELETE command is used to remove statement lines

from a program. The general format for this command is:

DELETE ni' n2

where nl and n2 are line numbers in the current program. The

DELETE command removes all statement lines between and including

any two specified line numbers (nl and n2) .

Example:

10 INPUT A, B, C

20 D = A+B+C

30 PRINT A

40 PRINT B;C

50 PRINT D

60 END

DELETE 30, 40

LIST

10 INPUT A,B,C

20 D = A+B+C

50 PRINT D

60 END

In this example, the effect of the DELETE command is to

remove lines 30 and 40 from the program.

- 64

DIM

The DIM statement is used to define the size of a matrix

(see the definition of Matrix in Section 1.2) or a string

----./

variable. Cromemco BASIC permits the user to define one,

two, or three dimensional matrices. A two (i.e., M ..) or1J

three (i.e. M. 'k) dimensional matrix is commonly called a1J
table or array. A one dimensional matrix -- a matrix with

n columns but only one row -- is commonly called a list or

vector. When dimensioning a string variable, the computer

simply handles the variable as though it were a one dimensional

array.

The respective general formats for declaring the number

of rows and columns in one, two, and three dimensional

matrices are:

DIM M(n) or M$(n)

DIM M(n,m)

DIM M(n,m,r)

where M is any matrix variable, M$ is any string variable, and

'--~

n, rn, and r are integers.

name as any scalar.)

(A matrix variable can have the same

If a matrix is not specifically dimensioned in a program,

the default value of 10 will be automatically assigned to a

singly subscripted matrix. Doubly and triply subscripted

matrices will generate an error message if not explicitly

dimensioned.

The maximum size of any matrix is only restricted by the

amount of available memory:

"----/

~

~

~.

- 65

FOR ...NEXT

The FOR ...NEXT statements instruct the 'computer to

repeat a group of statements a specified number of times.

Once this "loop" has been executed for the last time specified,

program control is transferred to the statement line

immediately following the NEXT statement.

The general format for this command is:

FOR X = nl to n2 STEP n3

(n program statements)

NEXT X

The X in a FOR-NEXT command may be any non-subscripted

numeric variable. String variables cannot be used in FOR-NEXT

commands. The expressions nl and n2 may equal to any number.

The STEP n3 portion of the FOR command is optional. If a STEP

value is not specified, the computer assumes a default value of

+1 for STEP. Note that 16K BASIC programs will execute

significantly faster if variables used in loops (and/or for

subscripting) are declared as type INTEGER.

Example:

10 FOR A = 0 to 10 STEP 2

20 B = A+l

30 PRINT B/~

40 NEXT A

50 END

RUN

1357911***50END***

- 66

Any FOR-NEXT loop is executed by first setting the value

of the FOR variable equal to nl. After all the statements in

the loop are executed, the program returns to the FOR command

and increments the FOR variable by the value specified by n3

(the STEP value). The loop is terminated when the value of

the FOR variable is greater than n2 and control is transferred

to the statement immediately following the NEXT statement.

FOR-NEXT loops may be nested within a program. It is

important to keep in mind, however, that each FOR command

and its corresponding NEXT command must be completely contained

within any larger loop.

Example: Correct Nesting Format

10 FOR A = 1 TO 50 STEP 2

20 FOR B = 1 TO 30 STEP 5

~

[30100

FOR C = 1 TO 10 STEP 1

NEXT C

~

110 NEXT B

120 NEXT A

Illegal nesting occurs when FOR-NEXT loops overlap.

Example:

Incorrect Nesting Format

10

FOR A = 1 TO 50 STEP 2

20

FOR B = 1 TO 30 STEP 5

30

FOR C = 1 TO 10 STEP 1

100 NEXT B

110 NEXT C

120 NEXT A

"---../

~

~.

~

- 67

GOTO

The GOTO instruction is used to interrupt the normal

execution sequence of statements in a program by transferring

control to a specific line.

The general form of the GOTO statement is:

GOTO n

where n is the number of a statement in the program. GOTO can

also be used in direct mode and can be used after you hit RUN.

This instruction is particularly useful for transferring

program control to a subroutine if a certain logical condition

is met.

Example:

10 INPUT A

20

IF A <0 THEN 200

30

B = SQR(A)

40

PRINT "THE SQUARE ROOT OF "iAi" IS "iB

50

GOTO 210

200 PRINT "THIS YIELDS AN IMAGINARY NUMBER"210 END

RUN

7 - 2

THIS YIELDS AN IMAGINARY NUMBER

210 END

RUN

73

THE SQUARE ROOT OF 3 IS 1.7320508075688

210 END

In this example, the GOTO statement transfers program

control to line 210.

PRINT

RETURN

PRINT "THIS IS A SUBROUTINE"

PRINT "WHICH DEMONSTRATES THE"

- 68

GOSUB-RETURN

The GOSUB command transfers control to the first

statement of a subroutine.

The general format for the GOSUB command is:

50 GOSUB n

where n may be the starting line number of any subroutine.

An arithmetic expression may be used if it evaluates to

an integer that is a legal line number. GOSUB can also be

used in direct mode and can be used after you hit RUN.

When the desired subroutine has been performed, a

RETURN command instructs the computer to exit the subroutine

and to re-route program control back to the statement line

immediately following the one containing the GOSUB command.

Example:

20 GOSUB 50

30 PRINT "PROGRAM OVER"

40 END

50

60

70 PRINT "GOSUB STATEMENT"

80

90

RUN

THIS IS A SUBROUTINE

WHICH DEMONSTRATES THE

GOSUB STATEMENT

PROGRAM OVER

40 END

-------/

,~/

~

~

~

~.

- 69

In 16K BASIC, subroutines may be fully enclosed or

"nested" in another subroutine. various versions of BASIC

will have different limits of nesting depth. 16K BASIC

allows nesting to 16 deep.

When nesting subroutines, remember that the RETURN

instruction will take you back to the last GOSUB and

start execution of the next line immediately after.

Improperly nested GOSUB-RETURN instructions will generate

error messages. A nested subroutine is executed after the

GOSUB statement and before the RETURN statement in the

subroutine in which it is enclosed.

- 70

IF ...THEN

The IF-THEN statement instructs the computer to transfer

control to a specific statement in the program based on

whether a specified condition is true or false.

The general form of the IF-THEN command is:

IF X THEN line-number

or

IF X THEN statement

where X may be any relational expression or numeric expression.

In a relational expression, an operator (e.g., =, <,>=,<=, <>,»

is used to compare two expressions or values. The specified

statement following THEN may be any legal BASIC statement

with the exception of a FOR-NEXT, END, REM or DATA statement.

Example:

70IF A = B/C THEN 100

80

IF A < B/C THEN 110

90

IF A > B/C THEN PRINT"NO REAL NUMBER"

In this command,

the expression following IF is evaluated

and if it is true the statement following THEN is executed

along with any subsequent statements on the same line. If

the expression is false, the program continues to the LINE

immediately following the IF-THEN command.

.'----./

'----./

Example:

lfOfOINPUT A

llfOPRINT A

l2fOEND

IF A=fO THEN PRINT "MUST BE NON-ZERO" GOTO lfOfO

~

~

~

- 71

In this example, the computer will output a prompt

(?) and the user will respond with a number. If the num­

ber is non-zero (A=O is false), control will be passed

to line ll~, the number will be printed, and execution

of the program will terminate. If the number is zero

(A=O is true), the part of line l~~ after THEN will be

executed, printing out the message and returning control

to the beginning of line l~~ which will request another

number from the user.

.'

- 72

IMODE

To set all variables within a program to the Integer

mode the instruction:

IMODE

should be given as a command before the program is RUN or

as the first statement in the program. To make sure that

the BASIC interpreter is in the Integer mode, the line

I IMODE: X=2.5: IF X=2.5 THEN RUN

may be coded. If this line is used, it must be the first

line of the program.

Integer variables occupy 2 bytes and must be within

the range +32767 to -32768.

This instruction will be overridden by the LONG and

SHORT instructions.

~

------.

'---.-/

~

r--

r--

- 73

INPUT

The purpose of this statement is to assign a value,

input through a terminal, to a variable in a program. The

general format for this instruction is:

INPUT Xl' X2""'Xn

where Xl through Xn may be any numeric or string variables.

When the INPUT statement is executed in a program, a prompt

is output to the terminal. The user should respond to this

prompt by typing in a list of data which corresponds to the

variable list in the INPUT command.

Example:

10 INPUT A,B,C,D

20 PRINT A

30 INPUT E,F

40 PRINT B;" ";C;" ";D;" "i E i" "; F

50 END

RUN

?

32,18,20,4

32?

100,200

18

20 4100 200

50 ENDIf the user types in

- 74

terminal. This prompt continues to appear until each

variable has been assigned a value.

Example:

INPUT A,B,C,D,E

RUN

?1,2,3 (CR)

??4

??5

If more data is input than is required, an error

message will be generated.

The type of data input must be the same as the type

of variable listed in the INPUT command. For example, if

the INPUT command contains a list of numeric variables, the

data input must be numeric data. If the data and variable

types don't match, an error message will be generated.

---./

----.-/

'-----/

~

~

~"

- 75

INTEGER

To set a given variable to the integer mode the

instruction:

INTEGER A [(xi) [,B (Y),..J
should be put at the beginning of the program. In this

statement, X and Y are optional DIMensions (DIMensioning

may be done via the INTEGER statement) and A, B, etc.,are

the INTEGER variables.

Integer variables occupy 2 bytes and must be within

the range +32767 to -32768.

This instruction overrides the SFMODE and LFMODE

instructions.

IMPLIED LET STATEMENTS

- 76

LET

The LET statement is used to assign a value to a

given variable, string variable, or array. The general

form of the LET statement is:

LET X = n

where X is any numeric or string variable and n may be

a number, another variable, or the results obtained by

evaluating an expression.

16K BASIC is designed to allow the user to assign

values to variables without entering LET each time. This

capability is called "implied LET".

E{{amples:

LET STATEMENTS

~

'-/'

10 LET A = 45

10 LET B = A + 10

10 LET A$ = "16K BASIC"

10 LET X = Y + L

10 A = 45

10 B = A + 10

10 A$ = "16K BASIC"

10 X = Y + L

"--./

~

~

~.

- 77

LFMODE

To set all variables within a program to the Long

Floating Point mode the instruction:

LFMODE

should be given as a command before the program is RUN or

as the first statement in the program. To make sure that

the BASIC interpreter is in the Long Floating Point mode,

the line

1 LFMODE: X=O.12345678: IF X<>O.12345678 THEN RUN

may be coded. If this line is used, it must be the first

line of the program.

Long Floating Point variables occupy 8 bytes, have an

accuracy of 14 digits, and must be within the range ±9.99E+62

to ±9.99E-65.

This instruction will be overridden by the INTEGER

and SHORT instructions.

- 78

LIST

The LIST command instructs the computer to print out

one or more statement lines to an output device or a

file. The most frequently used output devices include

terminals, line printers, and disk sectors.

The LIST command may be used to output an entire

program, a block of statement lines within a program, or

a single statement line.

The general format for this command is:

LIST nl,n2

where nl and n2 are statement numbers in the current program.

When nl and n2 are not specified, the LIST command

will output the entire program. If a single statement

number is specified, the program will be listed from that

statement number through the end of the program. If both

nl and n2 are specified, the computer will list line

number nl through line number n2.

Example:

10 INPUT A, B

20 X = A+l

30 PRINT A, B

40 PRINT X

50 END

~

'--J

~

~

LIST 20,30

20

X = A+l

30

PRINT A,B

LIST 30 30

PRINT A,B

40

PRINT X

50

END

LIST 10

INPUT A,B

20

X = A+l

30

PRINT A,B

~
40PRINT X

50

END

When the file version of the LIST command is used

(see Chapter 3), the current program is automatically

output to a file device in ASCII format. A program

output by the LIST command can be read back into storage

by the ENTER command.

~

- 79

- 80

LONG

To set a given variable to the Long Floating Point

mode the instruction:

LONG A [(X)] CB (Y),..J

~

should be put at the beginning of the program. In this

statement, X and Y are optional DIMensions (DIMensioning

may be done via the LONG statement) and A, B, etc., are the

Long Floating Point variables.

Long Floating Point variables occupy 8 bytes, have an

accuracy of 14 digits, and must be within the range ±9.99E+62

to ±9.99E-65.

This instruction overrides the IMODE and SFMODE instructions.

'.---/

~

r--"

- 81

ON ...GOTO

ON ...GOSUB

These commands transfer control to anyone of several

lines in a program based on the value of the expression

contained in the statement.

The general form for these statements is:

ON (X) GOTO or GOSUB nl,n2,··· ,ni

where X may be any arithmetic expression which is evaluated

to an integer and n. is any statement line number within thel

program.

/----

~,

Example: 10 INPUT A

20 LET A = A + 1

30 ON A GOTO 60, 80, 100, 120

60 PRINT Ai " ITERATIONS REQUIRED"

70 GOTO 20

80 -PRINT Ai " ITERATIONS REQUIRED"

90 GOTO 20

100 PRINT Ai " ITERATIONS REQUIRED"

110 GOTO 20

120 END

RUN

?O

1 ITERATIONS REQUIRED

2 ITERATIONS REQUIRED

3 ITERATIONS REQUIRED

120 END

- 82

In both command statements, control is transferred to

the line number whose position in the list corresponds to

the value of the expression. Thus, if the value of the

expression equals 2, control is transferred to the second

statement in the list. If the value of an expression

equals a real number, the program ignores the fractional

part of the number and treats the number as an integer.

If the value of the expression is less than or equal to ~

or greater than the number of items in the list, the

ON-GOTO or ON-GOSUB command is ignored and the program

continues to the next statement.

Any statement line listed in an ON-GOSUB command

must be the first line of a subroutine in the program.

~

'---../

'----/

~

r---

~

- 83

PRINT

The PRINT statement is used to print out expressions

or strings on a terminal or teletype. The PRINT command

can also be used to skip a line.

The general format of the PRINT statement is:

PRINT X

where X may be a number, a variable, a string variable, or

a string literal. The characters in a string will be

printed exactly as they appear. When used alone, the PRINT

command will generate a linefeed.

The following program contains a number of examples

of the use of the PRINT statement.

Example:

10 A = 1977

20 REM B = YOUR BIRTHDATE

30 PRINT "THIS IS "iA

40 PRINT

50 PRINT

60 INPUT B

70 C = A-B

80 PRINT "YOU WERE BORN IN "iB

90 PRINT

100 PRINT "YOU ARE "i Ci " YEARS OLD THIS YEAR"

110 END

- 84

RUN

THIS IS 1977

?1952

YOU WERE BORN IN 1952

YOU ARE 25 YEARS OLD THIS YEAR

110 END

The spacing of output can be controlled by using a

comma (,) or a semicolon (;) between items in a PRINT

statement list.

Items separated by commas are printed beginning in the

leftmost column of each printing field. using the default

value of 18 columns per field, the PRINT statement below:

10 PRINT 1, 2, 3, 4

will produce output in the following format:

~

'-....../

column
no.

1
t
~

2

t
18

3

t
36

4

t
54

See the SET instruction to change the default value of

the number of columns per field.

'------./

~

~

~

- 85

If a semicolon is used between items, the items are printed

adjacent to each other (i.e., without spaces between items).

For example, the statement:

10 PRINT "AL"; "TO"; "GE"; "TH"; "ER"

RUN

will produce output in the following format:'

ALTOGETHER

Commas and semicolons can be used in a PRINT statement

in any combination. If more items are listed in a PRINT

statement than can be output on one line, the computer will

generate a linefeed and continue printing on the next line.

The PRINT command may be replaced by the symbol "@"

in l6K BASIC. For example, the following statements:

30 PRINT

40 PRINT "AND IT SAVES SPACE"

can also be written as:

30 @

40 @ "AND IT SAVES SPACE"

On some teletypewriters and video displays, this

facilitates entry of large, text-oriented programs with

many blank lines.

More complex formatting of printed text is possible

with the TAB and SPC functions and the PRINT USING instruction.

- 86

RAD

This command sets the RADians mode for trigonometric

calculations. SCR and RUN automatically set the RAD

mode.

The general format for this command is simply:

RAD

(See SIN, COS, TAN, and ATN functions for examples.)

"--/

'--_/

'------.-/

~

~

~"

- 87

RANDOMIZE

This statement is used to reset the random number dummy

variable used by the RND and IRN functions so as to produce

a different sequence of random numbers each time the RND and

IRN functions are run.

Example:

10 PRINT "THIS IS A RANDOM NUMBER"

20 RANDOMIZE

30 PRINT RND (0)

40 END
RUN
THIS IS A RANDOM NUMBER

0.7137712225

40 END

RUN

THIS IS A RANDOM NUMBER

0.8171978025

40 END

This program will print a different random number every-

time the program is executed.

RANDOMIZE should be used sparingly (or even only once)

within a program to ensure that a ~ruly random sequence of numbers

results.

/\//
- 88

READ

The READ statement is used to read values from a DATA

list and assign these values to the variables listed in the

READ command.

The general form of this statement is:

READ Xl' X2'···'Xn

where Xl through Xn may be any numeric or string variables.

The order in which variables appear in the READ statement

determines which value from the DATA list will be assigned to

that variable. For instance, the first value that appears in

the DATA list is assigned to the first variable in the READ

list, the fifth value is assigned to the fifth variable, and

so forth. A pointer is moved in sequence through the list of

data values as these values are assigned to variables in the

READ list. The number of DATA elements must be equal to or

~

~

greater than the number of variables in the READ list. If too

few DATA elements are input, an error message will result.

Example:

10 READ A,B,C,D$

20 PRINT A,B,C,D$

30 DATA 10,20,30,"END"

40 END

RUN

10 20 30 END

40 END

Note that the DATA elements corresponding to a numeric

variable must be numeric data and the element corresponding

to a string variable must be a string.

'---./

~

r----

~

- 89

REM

The REM statement is used to insert remarks or comments

in a program. The general format for this statement is:

REM text

where text can be any comment or series of characters.

REM statements included in a BASIC program are ignored

when the program is executed but are output exactly as

entered. Consequently, any grammatical or typing mistakes

which are made when inputting a REM statement will not

generate an error message and will be output precisely as

they appear in the statement line. The programmer is

encouraged to use REM statements liberally throughout a

program to describe program operation. These remarks can

be particularly helpful to anyone who wishes to use or modify

a program written by another person.

- 90

RESTORE

The RESTORE statement allows rereading of data by

resetting the pointer in the DATA list to the first data

item.

The general format for this command is:

RESTORE line number

where the line number is any line number in the current

program. This command instructs the computer to reset the

pointer to the first data element in the first DATA statement

at or after the line number stated after RESTORE. If no

line number is stated, the pointer is reset to the first

data element in the program.

Example:

'-------'

~

10 READ A,B,C,D

20

READ E,F,G,H

30

RESTORE

40

READ R,S,T,U

50

RESTORE 90

60

READ L,M,N,O

70

DATA 1,2,3,4

80

DATA 5,6,7,8

90

DATA 9,10,11,12
"---'

~

~

~

- 91

100 PRINT A,B,C,D

110

PRINT E,F,G,H

120

PRINT R,S,T,U

130

PRINT L,M,N,O

RUN 1

234

5

678

1

234

9

101112

END

- 92

RUN

The RUN command instructs the computer to execute the

program starting at the lowest numbered line.

The general format for this command is:

~N

Example:

10

20

30

40

50

RUN

5

16

A = 5

PRINT A

B = 16

PRINT B

END

~

50 END

In this example, the RUN command instructs the computer

to execute the entire program.

Use of the RUN command automatically resets or "clears"

all variables, string variables, and matrices.

~

X=4

INPUT Y

Z = X*2 + Y

PRINT Z

END

~

- 93

SCRatch

The SCR command deletes the current program from memory.

The programmer should keep in mind that the SCR command erases

everything in the user work space and that scratched programs

cannot be recovered. Once the work space has been cleared,

the user may input a new program or access a previously input

program which has been saved on either disk or some storage

device.

The general format for the SCRatch commands is simply:

SCR

Example:

10

20

30

40

50

SCR

In the above example, statement lines 10 through 50 are

deleted from memory and the user can input a new program.

- 94

SFMODE

To set all variables within a program to the Short

Floating Point mode the instruction:

SFMODE

should be given as a command before the program is RUN or

as the first statement in the program. To make sure that

the BASIC interpreter is in the Short Floating Point mode,

the line

I SFMODE: X=O.12345678: IF X=O.12345678 THEN RUN

may be coded. If this line is used, it must be the first

line of the program.

Short Floating Point variables occupy 4 bytes, have an

accuracy of 6 digits, and must be within the range ±9.99E+62

to ±9.99E-65.

This instruction will be overridden by the LONG and

INTEGER instructions.

~

"----'

~

~

~

•

- 95

SHORT

To set a given variable to the Short Floating Point

mode the instruction:

SHORT A [(X)][,B(Y),...]

should be put at the beginning of the program. In this

statement, X and Y are optional DIMensions (DIMensioning

may be done via the SHORT statement) and A, B, etc., are the

SHORT Floating Point variables.

Short Floating Point variables occupy 4 bytes, have an

accuracy of 6 digits, and must be within the range ±9.99+62

to ±9.99E-65.

This instruction overrides the IMODE and LFMODE

instructions.

SiliNaw~iliViliSSV a~Sil ~g A~NO NVJ HJIHM SNOIiliJilMiliSNIWVM~OMd GOG

96 -

~

- 97

DATA

The DATA statement specifies values for variables

appearing in a READ statement.

The general form for this statement is:

DATA nI' n2,···,ni

where n is any numeric value or any string and i is an

integer. Values included in a DATA list are separated by

commas. More than one DATA statement may be included in any

program. Data is read in order from the first to the last

DATA statement appearing in a program and from left to right

within the statement. String data must be enclosed in

quotation marks.

Example:

10 READ A,B,C,D$

20 PRINT A,B,C,D$

30 DATA 16.8, 20.4, 76.2

40 DATA "END"

50 END

RUN

16.8

~.

20.4 76.2 END

~,

50 END

If the computer runs out of DATA during program execution,

an error message will be printed.

10

20

30

RUN

100 101 102 103

- 98

END

The END statement is comparable to STOP in that it

halts program execution and causes the computer to return

to command mode. The only real difference is that a program

may not be continued after an END statement. The general

format for this statement is simply:

END

Example:

LET A = 100

PRINT Ai SPC(l); A+li SPC(l) i A+2i SPC(l) i A+3

END

30 END

In Cromemco l6K BASIC, END statements are allowed any­

where in a program. Also, END statements are not required

at the end of a program. However, it is considered good

programming practice to use the END statement as the last

statement in a program.

~

'~

'--------

~

~

~

- 99

STOP

The STOP statement halts program execution and causes the

computer to enter command mode. Program execution may be

restarted from the beginning of the program or by using the

CONtinue command from the statement line immediately following

the last line executed. The general format for this statement

is simply:

STOP

Example:

10 INPUT A,B,C,D,E,F

20

LET N=A+B/C

30

PRINT AiBiC'

40

STOP

50

PRINT D,E,F

60

PRINT N

70

END

RUN

?1,2,3,4,5,6

123

40 STOP

»

In this example, the computer goes back to command mode

after encountering the STOP in statement line 40.

SGNVWWOJ SV G~Sn ~g X~NO NVJ HJIHM SNOI~Jn~~SNI W~~O~d £ol

OaT -

~

/~

~,

- 101

AUTOL

The AUTOL command provides automatic statement line

numbering. The general format for this command is:

AUTOL n, m

where n is the number of the first statement in the

current program and m is an integer which specifies the

amount to increment between line numbers. The AUTOL

command generates line numbers automatically so that the

user does not have to assign a line number to each statement

in the current program as the statement is input.

To interrupt the automatic generation of line numbers,

press the ESCAPE key or the RETURN key when prompted for

the next line.

- 102

CONtinue

The CON command instructs the computer to continue program

execution after a STOP statement or to resume execution after a

program is interrupted by a program error or by the user pressing

the ESCape key. The general format for the CONtinue command is

simply:

CON

Program execution will commence at the line following

the statement at which the program stopped. If program

execution stopped because of a program error, the error can

be corrected and the CON command used to continue execution

from the line following the one where the error occurred.

If the user wishes to re-execute the line in error, GOTO

(as a command) should be used.

'-------'

'----./

~

----...

- 103

DIR

The DIR command corresponds to the CDOS DIR command

(see the CDOS User's Manual for a full description). The

DIR command lists disk files giving size (in K-bytes) and

number of extents. However, in BASIC, the file specifier

(if used) must be enclosed in quotation marks or must be

another valid form of string expression.

Examples:

DIR -- will list all files on the current disk.

DIR "A:*.*" -- will list all files on drive A.

-----...

DIR "*.SAV" will list all files on the current

-----...

disk with the entension "SAV".

- 104

RENUMBER

This command renumbers the statement lines in the current

program. The general format for the command is:

RENUMBER rn, n, b, e

where m is the starting line number in the RENUMBERed program,

n is an integer which specifies the amount to increment between

line numbers, and band e are the first and last existing

line numbers to be RENUMBERed.

The RENUMBER command also alters line numbers imbedded

in the program in GOTO, GOSUB, and IF-THEN statements to

conform to the renumbered statements.

The default value for the RENUMBER statement is a starting

line number (m) of 10 and an increment value (n) of 10.

Example:

11 INPUT A
24 INPUT B
37 PRINT A*B
50 GOTO 11
63 END

> > RENUMBER

»LIST

10 INPUT A
20 INPUT B
30 PRINT A*B
40 GOTO 10
50 END

If only a starting line number (m) is specified, the

RENUMBERed program will start with line number m and also be

incremented by m.

'------'

~

'-----'

~

~

~

- 105

Example:

»RENUMBER 100

»LIST

100 INPUT A
200 INPUT B300 PRINT A*B400 GOTO 100500 END

If both of the first two parameters (m, n) are specified,

the RENUMBERed program will start with line number m and will

be incremented by n.

Example:

»RENUMBER 100,10

»LIST

100 INPUT A
110 INPUT B
120 PRINT A*B
130 GOTO 100
140 END

When the third parameter (b) is specified, only the line

numbers in the old program starting with b will be altered in

accordance with m and n.

Example:

»RENUMBER 1000,150,120

»LIST

100 INPUT A
110 INPUT B

1000 PRINT A*B
1150 GOTO 100
1300 END

If all four parameters are specified, line numbers in

the old program between band e will be changed.

GN3: 00£1
001 O.LO~ GOOl

S:.v."if .LNDld 1001
s: .LDdN1 0001
"if .LDdN1 001

.181'1«

901 -

~

~

- 107

2.4 STRING CONTROL INSTRUCTIONS

STRING PROTOCOL

Cromemco 16K BASIC includes a number of procedures

for manipulating alphabetic information. In BASIC, alphabetic

information is handled through strings and string variables.

A string is defined as any combination of characters,

including letters, numbers, special characters, and spaces,

but excluding quotation marks. A string literal is defined

as any string enclosed in quotation marks. For example,

in the following statement:

10 PRINT "CROMEMCO 16K EXTENDED BASIC"

the phrase CROMEMCO 16K EXTENDED BASIC is a string literal.

The "value" of a string is simply the number and sequence

of characters which comprise the string literal.

String variables are also permitted in Cromemco 16K

BASIC. A string variable is defined as any letter A through

Z followed by a dollar sign or any letter and any number ~

through 9 followed by a dollar sign. Examples of legal

string variables include the following:

String Variables

A$

B$

C5$

D6$

'-----"

- 108

There is no limit to the size (i.e., number of characters)

of a string literal that may be assigned to a string variable. ~

However, the default value in l6K BASIC for string size is

11 characters or less. If string literals of more than 11

characters are to be assigned to a variable, the string variable

must be DIMensioned. The DIM statement is typically used in

BASIC to define the size of an array (see the description of

DIM in Section 2.1). When dimensioning a string variable, the

computer simply handles the variable as though it were a one­

dimensional array.

Example:

10 DIM Al$ (20), B$ (30), C4$ (40)

In this example, the string variable Al$ is dimensioned

to allow for strings up to 21 characters in length, the variable

B$ is dimensioned to allow for strings up to 31 characters in

length, and the variable C4$ is dimensioned to allow for strings

of up to 41 characters in length. Any string literal assigned

to a variable which exceeds the specified dimension is truncated.

Consequently, the programmer should be sure to dimension string

variables to handle the largest string literal to be input.

Note: DIM A$ (20) allows a 21 character string because

string bytes are numbered from 0 through the specified DIM

size.

Remember that using the ~th element of strings (and

arrays) can save memory space.

~

~

~

~

- 109

Strings may also be used in relational expressions

(i.e., equal to, less than, greater than, etc.). For

instance, two strings are equal if they have the same number

and sequence of characters.

Example:

10 DIM A$(20)

20

A$="MARY K. SMITH"

30

B$="MARY"

40

C$=A$(jO,3)

50

PRINT B$

60

PRINT C$

70

END

RUN

MARY

MARY

70 END

In this example, B$ is said to be equal to C$.

Other string relations are determined by comparing in

sequence the characters in the same position in both strings.

The comparison is made on the basis of the ASCII code value

assigned to each character. IF the ASCII code value of a

character in a particular position in one string is greater

than the value of the character in the same position in the

other string, then the first string is greater than the

second string.

- 110

A string value may be assigned to a string variable

either through the assignment statement, the INPUT statement,

or by using the READ statement and inputting string literal

DATA. String data listed in a DATA statement must be enclosed

in quotation marks.

Numeric and string variables may be mixed in the same

READ statement. However, the data in the DATA list must

match the variables in the READ statement. In other words,

only numeric data can be assigned to a numeric variable and

only string data can be assigned to a string variable.

Example:

10 DIM A$ (20), Bl$ (30), C$ (40)

20 READ A$, Bl$, c, Y, C$, Z

30 DATA"THIS","EXAMPLE", 16.2,25.84,"ENDS",14

40 PRINT A$, Bl$, c, Y, C$, Z

50 END

In this example, we read in two string variables first,

two numeric variables next, another string variable, and

another numeric variable. Consequently, the DATA list must

first include two string literals, then two numeric values,

then another string literal, and finally a numeric value.

Finally, the following example indicates an easy way to

fill a string with any character (in this case, a question mark)

A$(-l)= "?" + A$(-l)

~

..----/

'-----

~

- III
SUBSCRIPTING STRING VARIABLES

String variables may be subscripted in 16K BASIC. This

capability allows the user to define and manipulate substrings.

A substring is any part of a string. For example, if the

string variable A$ equals "SUBSTRING EXAMPLE", substrings of A$

include "SUB","UBSTR", "G EXAMPLE", and any other parts of the

string.

Substrings are referenced through subscripted string

variables. The general formats for string subscripts are:

A$(n) or A$(n,m)

where A$ is any string variable and n and m are numbers or numeric

expressions representing a character position within a string. Note

that programs execute significantly faster if variables used for

subscripting (and/or loop~) are declared as type INTEGER.
~

The first format, A$(n), defines a substring starting with

the character in position n and including all subsequent characters

in the string. The second format, A$(n,m), defines a substring

starting with the character in position n and ending with the

character in position m.

Example:

10 DIM A$ (20)

20 LET A$ = "SUBSTRING EXAMPLE"

30 PRINT A$ (10)

40 PRINT A$ (3,8)

50 END

RUN

EXAMPLE

STRING

50 END

Remember that the first character position is numbered ~!

- 112

A negative m specifies the length of a string.

To specify a zero length, the user may code the second

subscript as %8~~~% (-32768), because BASIC complements

the user value to get the length (and the complement

of %8000% is still %8000%) ignoring the most significant bit

of the result.

This feature may be used in practice as follows:

---/

1030

1040

L=INT(J+L*(N-l»+K

A$=B$+C$(M,BINOR(-L,%8000%»+D$

Thus, if L evaluated to zero in line 1030, statement 1040

would be equivalent to A$=B$+D$ since zero characters of C$

are specified! Note that, according to the rules of subscripts,

C$(N,~) implies the portion of C$ starting at the Nth

character and ending at the last character dimensioned!

The following conventions affect subscripting:

For A$ (N, M);

If N<~, then N is automatically set to equal ~ and M

is set equal to the value specified in the DIM

statement and any other specified value for

M is ignored.

If M<~, then the length of the substring is set equal

to the absolute value (ABS) of M.

If M<N, then M is set to the value specified in the

DIM statement.

If N>DIM value, an error message is generated.

'-----"

'-- -

~

~

~

- 113

For output usage, if only one subscript (i.e., N) is

specified, the string will be output from position N

through the length of the string. If no subscript is

specified, the string will be output from position ~

through the length of the string.

For input usage (i.e., READ, GET, LET, and INPUT), if

no subscript is specified, the entire destination string

will be set to nuls and then the source will be moved into

it. If a single subscript N is specified, the string will

be set to nuls from position N on and then the source moved

into it starting at position N.

No string assignment will ever move more bytes to the

destination than can be accepted by the specified dimension.

(The user should note that A$ = A$ + B$ is not an effective

construct as it is equivalent to A$ = B$. The user should

specify A$(LEN(A$» = B$.)

There are a number of BASIC statements and commands

which can be used to manipulate strings. Most of these

statements and commands have already been described in

Section 2.1. However, BASIC also includes a number

of functions designed to increase string handling capabilities.

These pre-defined functions are described in Section 2.4.

- 114

2.5 PROGRAMMED FUNCTIONS

Cromemco l6K Extended BASIC includes a number of

arithmetic and trigonometric functions which perform common,

frequently used calculations. These functions are pre-defined

in BASIC so that the programmer does not need to write a

program to perform a common function every time such a calculation

is required.

Cromemco BASIC also includes a number of functions

designed to increase string handling and matrix handling

capabilities, a number of system functions which provide

general system information, and an assembly language subroutine

function.

In addition to these pre-defined functions, Cromemco BASIC

permits the programmer to define up to 26 functions.

Cromemco l6K BASIC includes the following functions:

ARITHMETIC FUNCTIONS

ABS (X) - absolute value of X

BINAND(X,Y) - binary logical AND

BINOR(X,Y) - binary logical OR

BINXOR(X,Y) - binary logical EXCLUSIVE OR

EXP (X) - the value "e" to the power X

FRA (X) - gives only the fractional portion of X

FRE (X) - gives the number of memory bytes in the

system which are currently "free" or unused

INT (X) - integer value of X

IRN (X) - generates an integer random number between

o and 32767

LOG (X) - natural logarithm of X

'----'"

'----'"

'-

~

~

~

- 115

MAX (Xl'...,X) - returns the numeric expression Xn n

with the maximum value in the expression

list.

MIN (Xl'...,X) - returns the numeric expression Xn n

with the minimum value in the expression

list.

RND (X) - generates a random number between 0 and 1

SGN (X) - algebraic sign of X

SQR (X) - square root of X

TRIGONOMETRIC FUNCTIONS

ATN (X) - arctangent of X (result in radians or degrees)

COS (X) - cosine of.x

SIN (X) - sine of X

TAN (X) - tangent of X

STRING FUNCTIONS

ASC (X$) - provides equivalent ASCII numeric value of the

first character of X$

CHR$ (X) - gives a single character string which is the

ASCII equivalent of X

LEN (X$) - gives the number of characters assigned to X$

POS (X$, Y$, n) - determines the location of a substring

within a string by returning the value

of the position at which the first

character of the substring is located

starting with character n.

- 116

STR$ (X) - converts any numeric expression X to a string

which is the character representation of X

VAL (X$) - converts any string expression X$ to the

numeric representation of X$

PROGRAMMER DEFINED FUNCTIONS

DEF FNs (Xl,...,Xn) = Y - allows the user to define

up to 26 different functions

Brief descriptions, including examples, of each of these

functions are included in the following section.

~

---.-/

"-

~

.----...

~

- 117

ARITHMETIC FUNCTIONS

ABS (X)

This function gives the absolute (i.e., positive) value

of X, which can be any numeric expression.

Example:

10 PRINT ABS (-26)

20 END

RUN

26

20 END

/

- 118

BINAND, BINOR, BINXOR

These functions perform logical operations bit by bit

on l6-bit operands. The BINAND function returns a 1 bit in

a given position if both bits are equal to 1 and a ~ if both

bits are not equal to 1. The BINOR function returns a

1 if either bit is equal to 1 and a ~ if both bits are

equal to~. The BINXOR returns the exclusive or of each

pair of bits.

The general form for these functions is:

BINAND (X,Y)

BINOR (X,Y)

BINXOR (X,Y)

where X and Y are any numerical expressions (which are converted,

if necessary, to l6-bit integers before the logical operation

takes place).

Examples:

A = BINAND (30,%4F3%) will place 18 (%12%) in A

PRINT BINXOR (%32%,14) will print 60 (%3C%)

~

~

'-

~

- 119

EXP (X)

This function calculates the value of the constant

"e'l (where e = 2.71828 ...) raised to the Xth power, where

x is a numeric expression.

If X=12, for instance, the value calculated for

~

~

EXP (12)

Example:

. 12
lS e

10 PRINT

20 A = 4.1

30 B = EXP (A)

40 PRINT B

50 END

RUN

60.340287597344

50 END

10

20

30

40

RUN

? 1
0.7

- 120

FRA (X)

This function returns only the fractional portion of

any numeric expression X. The integer portion of the number

is removed and is not recoverable.

Example:

INPUT A

B = 3.7*A

PRINT FRA(B)

END

40 END

~

'---'

'---

~.

FRE (x)

This function gives the number of memory bytes in

the system which are currently "free" or unused.

Example:

10 PRINT FRE (X)

20 END

RUN

2074

20 END

- 121

- 122

INT (X)

This function returns the largest integer value

which is less than or equal to any numeric expression X.

The counterpart of this function is the FRA (X)

function which ignores the integer portion of a given

expression and returns only the decimal portion.

Example:

10 PRINT "ENTER NUMBER OF DAYS I'

20 INPUT D

30 W = D/7

40 W = INT (W)

50 PRINT

60 PRINT "THAT'S ROUGHLY "i Wi " WEEKS"

70 END

RUN

ENTER NUMBER OF DAYS

?36

THAT'S ROUGHLY 5 WEEKS

70 END

'---'"

'---'"

'-----

~

~

- 123

IRN (X)

This function generates an integer random number between

~ and +32767. The numeric expression X is really a dummy

expression which is required but which is not actually used in

the generation of the random number. To change this sequence,

a RANDOMIZE command should be included in the program.

Example:

10 FOR N = 1 TO 10

20 PRINT IRN (6)

30 NEXT N

40 END

RUN

2928425801188354647929518846492410105202107652***40 END***

The short program listed above will print out 10 integer

random numbers. If this program is run a second time, it will

generate the same 10 random numbers. A different set of random

numbers will be generated only if a RANDOMIZE statement is

included in the program.

- 124

LOG (X)

This function calculates the natural logarithm (i.e.,

log to the base e) of any numeric expression X.

Example:

10 INPUT A

20 B = LOG (A)

30 PRINT B

40 END

RUN

? 3.2

1.1631508098056

40 END

"---./

"---./

'--

~

r---.

- 125

MAX (Xl,... ,Xn)

This function instructs the computer to examine

a list of numeric expressions (Xl through Xn) and return

the value of the numeric expression with the maximum

value.

Example:

10 X = 10

20 Y = 25

30 M = MAX (X,Y)

40 PRINT M

50 END

RUN

25

50 END

In this example, the maximum value contained within

the list is 25.

- 126

MIN (Xl'···'Xn)

This function instructs the computer to examine a

list of numeric expressions (Xl through Xn) and return

the value of the numeric expression with the minimum

value.

Example:

10 X = 5

20 Y = 10

30 M = MIN (X,Y)

40 PRINT M

50 END

RUN

5

50 END

In this example, the minimum value contained within

the list is 5.

~

,-----./

~

------...

- 127

RND (X)

This function generates a random number between 0 and

1. The numeric expression X is really a dummy expression

which is required but which is not actually used in the

generation of a random number.

Example:

10 FOR N = 1 TO 100

20 PRINT RND (2)

30 NEXT N

40 END

RUN

The above example will print out 100 random numbers. If

this program is run a second time, it will generate the same

100 random numbers. To generate a new set of random numbers

each time the program is run, the above example

can be rewritten as follows:

10 RANDOMIZE

20 FOR N=l TO 100

30 PRINT RND (2)

40 NEXT N

50 END

RUN

- 128

SGN (X)

This function returns a +1 if the value of the

numeric expression X is greater than ~, a ~ if X equals

~, and a -1 if X is less than ~.

Example:

10 INPUT A, B, C

20 PRINT SGN (A)

30 PRINT SGN (B)

40 PRINT SGN (C)

50 END

RUN

?-12, 0, 14

-1
o

1
50 END

~

~

'---

~

~

~

- 129

SQR (X)

This function calculates the square root of any positive

numeric expression X.

Example:

10 INPUT A

20 INPUT B

30 LET M = SQR (A*B)

40 PRINT M

50 END

RUN

? 6

? 2

3.4641016151378

50 END

PRINT ATN (1.0)

END

- 130

TRIGONOMETRIC FUNCTIONS

A TN (X)

This function calculates the arctangent, in radians or

degrees of any numeric expression X.

Example:

10 PRINT ATN(.80)

20 RUN

RUN

.67474094222353

20 END

In this example the arctangent of .80 is equal to

.67474094222353 radians.

If the DEG mode has been selected, the resulting value

is expressed in degrees. Thus:

DEG

10

20

RUN

45.000000000002

20 END

Although Cromemco 16K BASIC does not include pre-defined

ARCSIN and ARCCOS functions, the user can calculate these

using the ATN function as follows.

ARCS IN (X) = ATN (X/SQR(-X*X+l))

ARCCOS (X) = -ATN (X/SQR(-X*X+l))+2. *ATN(l.)

~

.~

'----

PRINT COS (60)

END

~

~

~

- 131

cos (X)

This function calculates the cosine of an angle X,

where X is any numeric expression. (See ATN(X) for a

description of how to calculate ARCCOS(X).) Unless DEG

mode has been selected, it is assumed that the value of X

is expressed in radians.

Example:

10 INPUT A

20 LET B = A*2

30 PRINT COS (B)

40 END

? .60

0.36235775447529

40 END

In this example, the cosine of a 1.20 (=B) radian angle

is .36235775447529.

Example:

DEG

10

20

RUN

0.49999999999949

20 END

The cosine of 60 degrees is 0.5. The result printed represents

the computational accuracy of the 16K BASIC.

- 132

SIN (X)

This function calculates the sine of an angle X, where

X is any numeric expression. (See ATN (X) for a description

of how to calculate ARCSIN (X).) It is assumed that the

value of X is expressed in radians unless the DEG mode

has been specified.

Example:

10 INPUT A

20 PRINT SIN (A*3)

30 END

RUN

? .04

0.11971220728892

30 END

In this example, the sine of a .12 radian angle is

approximately .12.

In the following example, we first select the DEG mode

and then request the program to print the sine of a 90 degree

angle:

DEG

10 PRINT SIN (90)

20 END

1.0

20 END

The sine of a 90 degree angle is 1.0.

~

~

'------

~

~

------..

TAN (X)

This function calculates the tangent of any angle X,

where X is a numeric expression. It is assumed that the

value of X is expressed in radians unless the DEG mode

has been specified.

Example:

DEG

10 PRINT TAN (30)

20 END

RUN

0.577350269189

20 END

The tangent of a 30 degree angle is .577350269189.

- 133

- 134

STRING FUNCTIONS

ASC (X$)

This function gives the equivalent ASCII decimal

value of the first character of any string expression

X$. An ASCII Character Set Table is included in Appendix B.

Example:

10 INPUT X$

20 PRINT ASC (X$)

30 END

RUN

? A

65

30 END

In this example, the ASCII decimal value for string

character A is 65.

'---..-/

'-----'

"------

~

~

~

- 135

CHR$ (X)

This function gives a single character string which

is the ASCII equivalent of the value of the numeric

expression X, where 0 < X < 255.

Example:

10 INPUT X

20 PRINT CHR$ (X)

30 END

RUN

?42

*

30 END

The ASCII decimal value 42 is equivalent to the

character *. Thus, in the above example, the command

CHR$ (42) instructs the computer to output the character

* on a terminal.

This command allows the user to draw graphs or figures

with special characters. The command may also be used to

initiate special functions such as cursor positioning,

generating line or form feeds, or causing a bell or some

comparable device to sound on a terminal.

- 136

LEN (X$)

This command returns an integer value which is equal

to the number of characters in any string variable X$. In

other words, the LEN function gives the length of a string.

Both characters and spaces are counted as part of the length.

Example:

10 DIM X$ (20), Y$ (30)

20 INPUT X$,Y$

30 PRINT "THERE ARE "; LEN(X$); " CHARACTERS IN STRING X$"

40 PRINT" THERE ARE "; LEN (X$); " CHARACTERS IN STRIl.'JGY$"

50 END

RUN

? EXAMPLE

?? LENGTH COMMAND

THERE ARE 7 CHARACTERS IN STRING X$

THERE ARE 14 CHARACTERS IN STRING Y$

50 END

'-----"

'-.../

'-----'

~

~

- 137

POS (X$,Y$,n)

This command is used to locate the position within a

string (X$) of the first character of a substring (Y$).

The position within the string X$ at which the search is to

begin is specified by the numeric expression n. This

function gives a value equal to the position of the first

character of the substring within the string.

Example:

10 DIN X$(50)

20

X$ = "THIS IS A SUBSTRING SEARCH"

30

P = POS(X$,"IS",4)

40

R = POS(X$,"R",20)

50

PRINT P

60

PRINT R

70

END

RUN

5

23

70 END

In this example, the computer is first instructed to search

for "IS" starting from the fourth character in X$ and second to

search for "R" starting from the twentieth character in X$.

Starting from position 4, the first character in substring "IS"

is located in position 5. Starting from position 20, the

first character "R" is located in position 23. Consequently,

the computer returns a value of 5 for P and 23 for R.

- 138

STR$ (n)

This function converts a numeric expression (n) into

a string which is the character representation of the

expression.

Example:

10 INPUT A

20 A$ = STR$ (A)

30 PRINT A$

40 END

RUN

? 8.45

8.45

40 END

In this example, the numeric value A = 8.45 is converted

to the string "8.45".

'--.;

../

'--...-/

'-----'

A = 1

B = A + VAL (X$)

PRINT B

END

~

- 139

VAL (X$)

This command converts a string variable (X$) into

a number.

Example:

10 X$ = "26.6321"

20

30

40

50

RUN

27.6321

***50 END ***

In this example, the string X$ is converted to its numeric

equivalent (26.6321) so that this value can be added to the

numeric expression A.

If the argument string for VAL consists of both numeric

and non-numeric information:

a) if the first character is non-numeric, VAL will return

a zero value (this can be an extremely useful way

of decoding a user's input)

b) if the first character(s) is a number this will be

converted without consideration of the portion of

the string after the first non-numeric character.

- 140

PROGRAMMER DEFINED FUNCTIONS

DEF FNs (Xl' X2,···, Xn) = y

The DEF function permits the programmer to define

up to 26 functions which are in addition to the pre­

defined functions included in 16K BASIC. In the command,

"s" is any single letter from A through Z, Xl through Xn

are any arithmetic "dummy" variables, and Y is any arithmetic

expression.

User-defined functions are restricted to one line.

Example:

10 X = 20

20 DEF FNA (X) = (X*20 + 1.156)/3.14

30 PRINT FNA (X)

40 END

RUN

127.75668789809

40 END

~

'---.../'

'------

r---..

~

- 141

2.6 ADVANCED PROGRAM INSTRUCTIONS, FUNCTIONS, AND EXAMPLES

Cromemco l6K Extended BASIC provides the advanced

programmer with a number of instructions and functions which

are designed to facilitate error handling capabilities during

program execution, aid in debugging programs, allow machine

language interface, and control output to a terminal. This

section includes a description of each of these.

- 142

ECHO

This instruction is used to re-enable the display of

information at a terminal after the display has been dis­

abled by the NOECH instruction. ECHO may be used as either

a command or as a statement. The general format for this

instruction is simply:

ECHO

~

~

',,---

~

- 143

ESCape

ESC may be used as either a statement (with a line number)

or as a command (without a line number). The ESC instruction

is used to re-enable ESCape key operation after it has been

disabled by the NOESC command. The general format for this

instruction is simply:

ESC

- 144

INP, OUT

These instructions are used to INPut data from and

OUTput data to a previously defined I/O port.

The INP function allows the user to read the contents

of any I/O location. The general format for this function

is:

INP (M)

where M is any I/O address.

The OUT instruction is used to output data to a

given I/O location. The general format for this

statement is:

OUT M,b

where M is any I/O address and b is the byte value to be

output.

Example:

10 A = INP(%FF%)

20 PRINT A

30 OUT %FF%,A

40 END

~

---./

'-.....--

r----

,r---,

- 145

MAT m = numeric expression

This statement is used to set all elements in a matrix

(m) equal to the value of the numeric expression.

Example:

10 DIM A(1,4)

20

READ A (1,1), A (1 ,2), A (1,3), A (1 ,4)

30

DATA 20,21,22,23

40

PRINT A (1,1), A (1,2), A (1,3), A (1 ,4)

50

MAT A = 0

60

PRINT A (1,1), A (1,2), A (1,3), A (1,4)

70

MAT A = 1

80

PRINT A (1,1), A (1 ,2), A (1,3), A (1,4)

90

END

~,

RUN

20

o

1
90 END

21

o

1

22

o

1

23

o

1

- 146

NOECHO

The NOECHO instruction is used to disable the display

of information at a terminal. This command is most

commonly used when inputting information such as a password

which the user needs to protect. The information display

can be re-enabled on the terminal by using the ECHO instruction.

The general format for the NOECHO instruction is simply:

NOECHO

~

~

~

~.

~,

- 147

NOESCape

NOESC may be used as either a command (no line number)

or as a statement (with a line number). The purpose of the

NOESC instruction is to disable the ESCape key operation

on a terminal. Most terminal keyboards include a key

labelled ESC which when pressed will abort program execution

and return the terminal to text input mode. The NOESC

instruction is used to prevent program interruption when

the ESC key is pressed.

The general format for this instruction is:

NOESC

-- ------

- 148

NTRACE

The NTRACE instruction disables the TRACE instruction

which calls for line by line examination of a program during

execution. NTRACE may be used as either a command (with no

line number) or as a statement (with a line number). The

general format for this command is simply:

NTRACE

~

~

~

- 149

ON ERROR

The purpose of this command is to direct the computer to

a specific statement or routine when a non-fatal error occurs

during program execution.

{STOP

ON ERROR GOTO
GOSUB

The general form of this command is:

line number

r-'

~

where the line number is any line number in the current

program. A non-fatal error in l6K BASIC is any error listed

in the error table (see Appendix A) with a number of 128

or above. Errors numbered 127 and below are defined as fatal

errors and cannot be trapped with an ON ERROR statement.

If ON ERROR is written at the beginning of a program,

the statement specified with ON ERROR will be executed each

time a program error occurs. If placed elsewhere in the

program, the statement will be executed only for errors which

occur during the execution of statements following the

ON ERROR statement.

Example:

60 INPUT A,B

80 PRINT A*B

100 ON ERROR GOTO 300

120 INPUT C,D

140 PRINT CID

160 GOTO 60

300 PRINT "NON-FATAL STRING ENTRY ERROR"

320 GOTO 120

- 150

In this example, any error which occurs before line ~

100 will be dealt with by the standard system error handling

procedure. Any trappable error which occurs after line 100

will cause the program to execute statement line 300.

~

"----

~

- 151

ON ESC

This instruction directs the program to execute a

specified statement when the ESC key is pressed. The general

form for this instruction is:

DSTOP
ON ESC GOTO

GOSUB
line number

~.

~,

where the line number is any line number in the current

program. Once the ON ESC instruction has been executed,

program control can be passed to the specified statement

when the ESC key is pressed. The statement specified in the

ON ESC instruction is then executed.

Example:

10 INPUT A,B,C

20 LET D = A + 3.2

30 ON ESC GOTO 10

40 PRINT A

50 GOTO 50

60 END

RUN

In this example, if the user presses the ESC key after

line 30 is executed, the program will be directed back to

line 10 and the prompt will again appear requesting input

data.

- 152

PEEK, POKE

Cromemco 16K BASIC provides a machine language interface

through the PEEK function and POKE command. These two

instructions are used to access the contents of memory

locations directly from BASIC.

The PEEK function allows the user to read the contents

of any memory address. The general format for this funciton

is:

PEEK (M)

where M is any memory address.

If the statement A=PEEK(M) is coded, the contents of

memory location M are examined and the value is assigned

to the variable A.

The POKE instruction is used to insert a byte into a

given memory location. The general format for this instruction

is:

POKE M, b

where M is any memory address and b is any byte. The byte,

represented by its hexadecimal equivalent, is POKEd into

memory location M.

PEEK and POKE are used to store byte-oriented information.

If M is too large to be treated as an integer, or if b is not

in the range 0 to 255, an error message will result.

"-./

'---./

~

~

- 153

PRINT USING

The PRINT USING statement allows the user to specify a

particular format for printing output. The general form of

the PRINT USING statement is:

PRINT USING f, Xl' X2' ...'Xn

where f is a specified format which may include a number of

special characters and string literals and Xl through Xn are

any numeric, string or subscripted variables or string literals.

All normal PRINT functions (such as TAB, SPC, semicolon,

and comma) are overriden by the PRINT USING statement.

There are a number of special characters used for outputting

numeric data in the PRINT USING statement. These special

characters include:

&

+

$

*

~

A brief explanation of each of these special characters follows.

The format expression may include a maximum of 128 characters.

Note also that if a number being formatted has more digits than

allowed for in the format expression, an all-asterisk error

message will result.

- 154

Digit Formating

1) Digit Formating with Leading Blanks (#)

The # sign is used to right justify digits in a print

field. The width of this print field is determined by the

number of special characters included in a format field.

Any non-digits (such as a minus sign) are eliminated. If

the number of # characters in the format field exceeds the

number of digits in the expression, the digits will be right

justified within the field and preceded by blanks.

Example:

In the statement PRINT USING "#####~,A

if A=l the output is bbbbl,

if A=12 the output is bbb12,

if A=123 the output is bb123

if A=123456 the error message *****is printed.

In this example, b represents a blank space (the b is

not printed out).

2) Digit Formating with Leading Zeros (&)

The & character is also used to right justify digits

in a print field. Any non-digits (such as a minus sign) are

eliminated. If the number of & characters in the format field

exceeds the number of digits in the expression, a ~ is printed

in the extra spaces.

'-/

~

'-----/

~

~

- 155

Example:

In the statement PRINT USING n&&&&&n, A

if A=l the output is ~~~~l

if A=12 the output is ~~~12

if A=123 the format is ~~123

if A=123456 the error message ***** is printed.

3) Digit Formatting With Leading Asterisks (*)

The * is used to right justify digits in a print field.

Any non-digits (such as a minus sign) are eliminated. If

the number of characters in the format field exceeds the

number of digits in the expression, an * is printed in the

extra spaces.

Example:

In the statement PRINT USING n*****n, A

if A=l the output is ****1

if A=12 the output is ***12

if A=123 the output is **123

if A=123456 the output is

4) Comma (,)

The " 11, character is used to place a comma in the position

in which the character appears in a string of digits (#,&,or*)

ln the format field. If the format specifies that a comma

~

be output in a position in the field which consists of leading

blanks, zeroes, or asterisks (*), then a blank, a zero, or an

asterisk respectively are printed in the comma position.

- 156

Example:

In the statement PRINT USING "##,###",

A

if A = 2003 the output is b2,003; if A = 4 the output is bbbbb4.In the statement PRINT USING "&&&,&&",

A

if A = 4457 the output is

044,57;

if A = 18 the output is 000,18.In the statement PRINT USING "*****,*",

A

if A = 996546 the output is 99654,6;

if A = 22 the output is ****2,2.

5) Decimal Point (.)

The character "." places a decimal point in the position

in which the character appears in a string of digits (#, &, *)

in the format field. All digit positions which follow the

decimal point are filled with digits. If the expression

contains fewer fractional digits than are specified, zeroes

will be printed in the extra positions. If the expression

contains more fractional digits than are specified, the

expression will be rounded so that the number of fractional

digits equals the number of format positions available.

Examples:

In the statement PRINT USING "###.###", A

if A = 234 the output is 234.000;

if A = 23.4567 the output is b23.457.

~

'---./'

~

~

~

~

- 157

In the statement PRINT USING "&&.&", A

if A = 13 the output is 13.0

if A = 66.72319 the output is 66.7

In the statement PRINT USING "*****.**", A

if A = 876.1245 the output is **876.12

if A = 1234567.245 an error message ******** results

Note in the last example that when too many significant digits

to the left of a decimal point appear, an all-asterisk error

message results.

6) Plus (+) and Minus (-) Signs

The plus (+) and minus (-) signs may appear in the first

character position in a format field. The character "+"

or "-" will print the respective sign of an expression in the

first character position in the format field. When an

expression is preceded by a plus or minus sign, any leading

zeroes will 'be replaced by blanks, zeroes, or asterisks as

specified. When a positive expression is preceded by a minus

sign, a blank space is left in the sign position.

Examples:

In the statement PRINT USING "+##.###", A

if A = 56.8888 the output is +56.889

if A = 4.564 the output is +b4.564.

- 158

In the statement PRINT USING "+&&&.&&", A

if A = 6.456

the output is +~~6.46i

if A = 234.2

the output is +234.20

In the statement PRINT USING "-*****.

*"A,
if A = -23.56 the output is-***23.6if A = 2345

the output is b*2345.0i

if A = -2345678.34 the error message ******** is printed.

'----../

7) Floating Plus (++) or Minus (--) Signs

The use of two or more plus or minus signs at the

beginning of a format field will output the respective plus

or minus sign directly preceding the value of the expression.

If a positive expression is used with a floating minus format,

a blank is printed immediately preceding the number instead of

a mlnus sign. The additional signs in the floating point format

can be used to represent digits.

Examples:

In the statement PRINT USING "++##.###", A

if A = 2.234 the output is b+b2.234

if A = 22.234 the output is b+22.234

In the statement PRINT USING "--&&&.&", A

if A = -44.56 the output is b-~44.6

if A = 5.32 the output is bbgS5.3

In the statement PRINT USING "++****.**", A

if A = 178.456 the output is b+*178.46

if A = 12345678.45 an error message ********* is

printed.

~

''---./

~

~

~-

- 159

8) Dollar Sign ($)

The character $ is used in either the first or second

character position in the format field to print out a dollar

sign ($) in that position. A dollar sign specified in the

second position of the format field must be preceded by either

a plus (+) or a minus (-) sign.

Examples:

In the statement PRINT USING "$##.##", A

if A = 23.456 the output is $23.46;

if A = 4.52 the output is $b4.52

In the statement PRINT USING "_$&&&.&&&", A

if A = 57.654 the output is b$~57.654;

if A = 123.q789 the output is b$123.779.

In the statement PRINT USING "$*.*", A

if A = 2.34 the output is $2.3;

if A = 234.55 an error message **** is printed.

9) Floating Dollar Sign ($$)

The use of two or more dollar signs beginning at either

the first or second character position in the format field

will output a dollar sign immediately preceding the value of

an expression. If two or more dollar signs begin in the

second character position, the first character position must

contain a plus or a minus sign.

- 160

Examples:

In the statement PRINT USING "$$$$#.###", A

if A = 234.2345 the output is b$234.235

if A = 4.45 the output is bbb$4.45~

In the statement PRINT USING "$$&&.&&", A

if A = 23.989 the output is b$23.99

if A = 4.5 the output is b$~4.5~.

In the statement PRINT USING "-$$***.**", A

if A = 24.56 the output is bb$*24.56

if A = 4455.67 the output is b$4455.67

10) Exponent Fields (!!!!)

The four consecutive characters !!!! indicate an exponent

in the format field. These four exclamation points represent

the expression E+nn, where n is any digit. When used with any

numeric expression, this field format will output the numeric

expression in exponential form.

Example:

In the statement PRINT USING "##.##!!!!", A

if A = 23.3456 the output is 23.35E+~~

if A = 2000 the output is 20.00E+~2

In the statement PRINT USING "-&&&.&&!!!!", A

if A = -.36 the output is 3600.05E-~3

~

,---/

~

~

~

~.

- 161

A format field is bounded on either side by any character

which is not one of the special characters defined in the PRINT

USING statement. As indicated in the general format for PRINT

USING statements, a format expression may include more than one

format field and may also include string literals. If multiple

format fields are specified, the values of expressions are

assigned to these fields in order. A format expression may be

assigned to a string variable.

When a string literal appears in a format expression, the

characters of the string literal are printed in the positions

held by any of the special format field characters. Strings

are left justified in the format field. If the number of

characters in the string literal is less than the number of

characters in the format field, the extra spaces will be left

blank. If the number of characters in the string literal is

greater than the number of characters in the format field, the

extra characters in the string literal will be truncated.

Example:

In the statement, PRINT USING "****,**.*", "STRING"

the string literal is output in the format STRING

In the statement, PRINT USING "&&&,&&&.&&", "STRING-LITERAL"

the string literal is output in the format STRING-LIT

If the number of items in the expression list exceeds the

number of specified format fields, the specified format fields

- 162

will be re-used for the extra items.

Example:

In the statement, PRINT USING "$$&&.&&", A,B,C

the expressions A, Band C will all be

formatted with the format field $$&&.&&

In the statement, PRINT USING "$$##bb$$&&.&", A,B,C

the expressions A and C will be formatted

using the format field $$## and the expression B

will be formatted using the format field $$&&.&

There are a number of general rules in l6K BASIC which

the user should keep in mind when formatting with the PRINT

USING statement. These rules are as follows:

Only the characters # or & should be used to

the right of a decimal point. The asterisk (*)

should not be used to the right of a decimal

point.

Either the floating dollar ($$) character or

pluses (++) or minuses (--) may be used within

the same formatting statement, but not both

types of characters.

A non-floating print character cannot be placed

left of a floating character. For example, the

format fields $+++ or +$$$ are legal but the

format field +$++ is illegal.

~

,~

------./

~

- 163

The asterisk (*) character follows the same rules

as the # character when used to the left of a decimal

point.

16K BASIC does not check comma syntax.

Only one decimal point may be used in a format field.

Trailing + or - signs are illegal in the exponential

format (i.e., E+nn.)

A typical application for the PRINT USING format follows.

This application is a program for printing payroll checks on

an automated basis.

10 PRINT "ENTER SOCIAL SECURITY NUMBER AND HOURS

WORKED"

PRINT "OF FOUR EMPLOYEES"

PRINT

INPUT A, Al

INPUT B, Bl

INPUT C, Cl

INPUT D, Dl

PRINT "WHAT IS THE HOURLY WAGE?"

INPUT W

PRINT

PRINT

Al = Al*W

~

~,

20

30

40

50

60

70

90

100

110

120

130 Bl = Bl*W Cl = Cl*W Dl = Dl*W

211329494

$128.00

- 164

140 PRINT A, B, C, D

150 PRINT

160 PRINT USING "$$$#.##bbbbbbb", AI, Bl, Cl, Dl

170 PRINT

180 PRINT "ANOTHER FOUR? TYPE 1 IF YES, TYPE ~ IF NO"

190 INPUT Q

200 IF Q = 1 THAN GOTO 10

210 END

RUN

ENTER SOCIAL SECURITY NUMBER AND HOURS WORKED OF FOUR EMPLOYEES

?552966937

??40

?525449121

??40

?455238541

??35

?211329494

??32

WHAT IS THE HOURLY WAGE?

?4.00

552966937 525449121 455238541

$160.00 $160.00 $140.00

ANOTHER FOUR? TYPE 1 IF YES, TYPE ~ IF NO

?O

END ,

~

''----../

~

r-----

r----

~

- 165

SET

To change the default values of system functions, the

user can specify the following instruction:

SET n,v

where n is the number of the system function to be changed

(see SYS (X)) and v is the new value for the function.

Example:

SET ~,130

changes the page width to 130 characters.

A special use of the set command is

SET 0,-1

which inhibits automatic carriage return-line feed at the

end of a line.

Using SET ~,-l to disable page width checking is

especially useful for graphics output to Qume-type printers.

For disk BASIC only, a SYS entry has been added to

facilitate timed input. To start the timer, the programmer

codes

SET 5,V

where V is approximately ten (l~) times the number of seconds

he wishes to delay. (Double V if using a 2MHz clock!

Experiment if using slow memory boards.)

When the next INPUT statement is encountered, BASIC

will issue an "ERROR 210 -- INPUT TIMEOUT" if the user does

not respond with a complete input within the allotted time!

- 166

The programmer may find how much time was used by coding

SYS(5) to find time remaining. The timeout is active at all

following INPUT statements, so when it is no longer desired

it may be de-activated by coding

SET 5,~ .

The programmer may use the ON ERROR statement to trap

the timeout error.

~

"---/ ,

~

~

~

- 167

SPC (X)

The SPC function is used only in a PRINT statement and

is used to instruct the computer to leave a specified number

of spaces. The general format for this function is:

SPC (n)

where n is any integer value. Unlike the TAB function, which

always determines print position relative to column ~, the

SPC command determines print position relative to the

current column location.

Example:

10 A = 2

20 INPUT C,D

30 PRINT SPC(lO) iAiSPC(A*lO) iCiD

40 END

RUN

?20,30

column
no.

2
t
10

2030
t
31

~

In this example, the computer is instructed to skip 10

spaces, print A, skip 20 spaces, and print C and ~

- 168

SYS (X)

This function provides system information based on the

value of the numeric expression X.

Example:

SYS (0) = page width

SYS (1) = tab field width

SYS (2) = last printed (i.e., current) character

SYS (3) = last runtime error number (for disk BASIC)

= last runtime error two-letter ASCII code

(for stand-alone BASIC)

SYS (4) = current print column number

SYS (5) = current input timer value

See the SET instruction for methods of changing the

default values.

~

---.-/

~

~

/---.,

~

- 169

TAB

The TAB function is used only in a PRINT statement and is

used to instruct the computer to begin printing at a specified

column number. The general format for this command is:

TAB (X)

where X is any numeric expression.

Multiple TAB functions may be included in one PRINT

statement, but the user should keep in mind that the print

position indicated by successive TAB functions is always

determined relative to column o.

Example:

10 A = 1

20 INPUT B,C,D,E

30 PRINT TAB (2)iBiTAB(5)iB+C+DiTAB(A+9) iD

40 END

RUN

?5,S,9,4

5 22 9

In this example, the computer is instructed to begin

printing B in column 2, to begin printing B+C+D in column 5,

and to begin printing D in column 10. Note that columns are

numbered 0 through the page width so the first column is

column O.

If the argument to the TAB function exceeds the current

page width, it is reduced modulo that page width to a number

between 0 and page-width. The default value for the page width

is 79.

- 170

If the argument is negative, no tabbing takes place

(i.e. same as SPC(~)).

If the (reduced) argument is greater than the current

column position, a new line (CR,LF) is issued and the TAB is

executed on the next line.

Note: If an SPC or TAB function is used in places other

than a PRINT statement, the functions are "no-ops" -- that

is, they do not alter their arguments in any way.

Example:

A = SPC(9.5) is the same as A = 9.5

"--./

"~

~

r-'

~

~.

- 171

TRACE

The TRACE instruction allows the user to follow the

execution of a program line by line by directing the computer

to list the line number of each statement being executed.

Statement line numbers are listed in brackets.

Example:

10 TRACE

20 INPUT X

30 PRINT "THIS IS"; X

40 LET Y = X + 1

50 PRINT Y

60 END

RUN

<20>? 10

<30> THIS IS 10

<40>

<50>

60 END

Register A contains the number (n) of parameters in

- 172

USR

The USR function makes it possible to call an assembly

language subroutine from a 16K BASIC program. The general

form of the USR function is:

USR (address, PI' ... , Pn)

where the address is the address of the assembly language

subroutine and parameters PI through Pn are converted to

16-bit integers.

The USR function always requires the user to specify one

parameter, even if it is a dummy parameter. For example,

USR(~,l) is correct, while USR(~) will result in a syntax error.

When the user routine gains control (at the address

specified in the USR function call), the following conventions

apply:

1)

the function call.

2) Register pair HL contains the "return" address to

BASIC. The user routine may re-enter BASIC via JP (HL).

3) The parameters are placed in order on the CPU stack

and may be recovered via POP instructions.

4) If and only if n parameters (n is the contents of

register A, as above) are POPped off the stack, BASIC may be

re-entered via a RET instruction.

5) The routine may return a 16-bit value to be assigned

to the function by placing the value in register pair DE before

re-entering BASIC.

6) Aside from the restrictions noted above, all registers

may be used in any way by the user routine.

'-----./

.~

"-.-/'

~

~

- 173

3.0 FILE ORGANIZATION

File Definition and Use

A file is a string of bytes which is usually stored on

a medium such as a disk or paper tape and which is given a

file name. The file name is used to refer to or call the

file. A file may consist of any string of bytes including,

for example, a program, a list of data, or any body of text.

BASIC files may be read from or written to a number of

devices including the disk, punch, paper tape, printer, etc.

Applicability

All of Chapter 3 of this manual is applicable to l6K

BASIC run under CDOS. Only the following instructions in

Chapter 3 can be used with Stand Alone BASIC:

OPEN

CLOSE

PUT

GET

IOSTAT

File Naming Conventions

Disk Files

PRINT

INPUT

LIST

ENTER

BYE

~

In Cromemco l6K BASIC, disk file names specify both

the disk drive and the file name plus an optional extension.

The general format for disk file names is as follows

(square brackets refer to optional quantities) :

- 174

[X:] file name [.extension]

where X: is an optional disk drive specifier (i.e., A:, B:,

C:, D:), the file name is a 1 to 8 character file name, and

.ext is an optional 1 to 3 character extension to a file

name. Both the file name and the extension may include any

printable ASCII character with the exception of the following:

~

$ * ? =

Non-Disk Files

space

The general format for non-disk files and device drives

is a three character name (XXX) where the first character

in the name is equal to a $. The last two characters specify

a particular device driver. Neither of the last two characters

may be a colon (:). More than two characters may follow the

$ character if the user feels the extra character will assist

in defining a device driver more clearly. However, only the

first two characters are significant. If the first character

is not a $, a CDOS disk file is assumed.

I/O Channels

16K BASIC is supplied with 4 I/O channels in addition to

the console (each I/O channel occupies 192 bytes of memory.) To

change the number of I/O channels see Appendix C.

Device Drivers

There are two device drivers supplied with both Disk and

Stand Alone BASIC: $SY (for console I/O) and $T5 (see Appendix

~

'--./

~

~

~

- 175

C: TU-ART I/O Port Driver). In addition, Disk BASIC supplies

the following drivers: $PU (punch), $RD (paper tape reader),

and $LP (line printer).

- 176

Random Access Files

Cromemco 16K BASIC provides the user with both sequential

and random access. Random access describes the process of

obtaining information from a disk or other storage device

where the time required for such access is essentially

independent of the location of the information most recently

obtained or placed in storage.

The following program demonstrates the random access

capability of Cromemco BASIC:

"--./

100
200
300
400
500
600
700
800
900
950
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

INPUT "RECORD SIZE ?? ",R
DIM A$ (R-l)
DIM B$(40)
INPUT "FILE NAME ?? ",B$
OPEN\l, R"B $
INPUT "RD=l,WR=2 » ",Q
INPUT "RECORD # , BYTE # »> ",R,B
IF Q=l THEN 1100
IF Q=2 THEN 1500
CLOSE'\l\
STOP
REM RD
GET"l,R,B~$(-l)
PRINT A$
GOTO 600
REM WR
INPUT "DATA ..» ",A$
PUT\l,R\A$ (-1)
GOTO 600
END

''--../'

In the example listed above, the user should note the following

important points:

1) In line lOO, note that BASIC allows any arbitrary

record size from 1 to 32767 bytes.

2) In line 200, note that DIMs may use expressions ~

~

~,

~

- 177

as arguments.

3) In line 500, note the power of being able to use

any string as a file name. File B$ is opened for

reading and writing with a record length of R.

4) In line 950, note that if you do not CLOSE a

file you may lose some or all of the data written

to that file.

5) In line 1200, note that starting at byte number

B within record number R, we read a string of bytes

which fill A$ (recall A$(-l) implies A$(~, DIM of A$)).

6) In line 1600, note that if you do not fill A$ with

Input at that point, BASIC fills the rest of A$

with nuls.

7) In line 1700, note that starting at byte zero

(the byte number defaults to ~ if omitted) of

record number R, we write the "full" A$ to

the file thus filling the record.

The user should keep in mind that a file must be CREATEd

before the file can be OPENed.

- 178

3.1 FILE STATEMENTS

Brief descriptions of each of the file statements

included in Cromemco 16K BASIC are presented in the

following section.

'---../

~

'---../

~

~

~""

- 179

OPEN

The OPEN statement allows the user to link a file or

a system device with a file number for future reference in

connection with file I/O statements.

The general form for the OPEN statement is:

OPEN\file number, PI' P2\string expression

The user should note that the general form for these

file statements includes a file number and two parameters

(PI and P2). The file number ranges from 1 to the maximum

channel available. The maximum channel available is installation

dependent. The use of a file number out of range will result

in an error message.

Specification of PI and P2 is optional and these

parameters may be used either singly or in combination.

For disk files only, the following definition holds:

On OPEN, PI specifies record size. Record size may

be any value from 1 to 32767. If not specified, the

default value assigned to parameter 1 is 128 bytes per

record. Parameter 2 (P2) specifies read/write access

to a file. Values assigned to P2 may be 1, 2, or 3,

where 1 equals read, 2 equals write, and 3 equals both

read and write. The default value for P2 is 3 (read and

write) .

- 180

The string expression may be any file name •

Example:

10 OPEN\l\"$Lpn

This statement instructs the computer to open file 1 for

access to the line printer.

[Note that although files OPENed for READ/WRITE may

be used as WRITE-ONLY files, slightly faster execution

speeds may occur if the file is OPENed as WRITE-ONLY.]

.~

'~

~

~

~

~

- 181

CLOSE

This command allows the user to disassociate a file

and a file number so that the file cannot be referenced

with that number. The general form of this statement is:

CLOSE [,file number'\.J

The file number is optional but if used may range from 1

to the maximum channel available. The number ~ cannot be

used as a file number.

On CLOSE, parameters 1 and 2 have no meaning.

If the file number is not specified, all active files

are closed.

Example:

10 CLOSE \1\

This statement instructs the computer to close file 1.

900 CLOSE

The statement in line 900 instructs the computer to CLOSE

all files currently OPEN.

- 182

PUT

The PUT command allows the user to write data in

binary format (see Notes on Binary Format at the end

of this section) into a file. The general form of this

command is:

PUT\file number, Pl' P2\[exPl"" ,exPnJ

where eXPl through eXPn may be one or more numeric expres­

sions, numeric or string variables, or string literals.

If no expression follows the second backslash, only device

status is set (e.g., record and byte position on a disk file).

This is a useful way of setting status (position) without

actually initiating any data transfer.

For disk files only, Pl is equal to the record number

and P2 specifies the byte number. If parameter 1 is not

specified, then the default procedure is sequential access.

If parameter 1 is specified and parameter 2 is omitted,

then P2 defaults to~. Specifying a negative number for

either parameter will result in the default value being

assigned to that parameter.

For non-disk files, Pl and P2 may be optionally

required and/or used by some device drivers.

'---./

"--./

"--../

~

~

~

- 183

GET

The purpose of the GET command is to get (or read)

data in binary format (see Notes on Binary Format at the

end of this section) from a file. The general form for

this command is:

GET\file number, PI' P2,variable expression list

The variable expression list may consist of one or more

numeric or string variables. These variables are assigned

values which are read sequentially from a file so each

variable type (string or numeric) must correspond to the data

type being read. For disk files only, PI is equal to the

record number and P2 specifies the byte number. If parameter

1 is not specified, then the default procedure is sequential

access. If parameter 1 is specified and parameter 2 is omitted,

the P2 defaults to~. Specifying a negative number for either

parameter will result in the default value being assigned to

that parameter. For non-disk files, PI and P2 may be optionally

required and/or used by some device drivers.

Example:

DIM A$ (31), B$ (20)

GET\F,R,B\A$(-l) , B$(10,19)

In this example, the GET statement requests that, starting

at byte B of record R in file number F, 32 bytes be read

into string A$ and then la bytes are read into B$ starting

at byte number la of B$. (A$(-l) specifies A$(~, DIM of A$

=> A$ (~, 31) •)

- 184

Notes on "Binary Format"

PUT and GET write and read files where the content

of the file is assumed to be consistent with BASIC's

internal numeric and string representations. Thus, numeric

items occupy space in the file according to the following

table:

Integer Items -- 2 bytes each

e.g., PUT\4\7,9

would write 4 bytes

Short Floating Point Items -- 4 bytes each

e.g., SHORT A, B(lO)

GET\3\B(1) ,B(2),A

would read 12 bytes

Long Floating Point Items -- 8 bytes each

e.g., PUT\2\SIN(30), SQR(A*A+B*B)

would write 16 bytes

String items occupy only as many characters in the file

as would be moved if they were used on the right side of an

equal sign in a LET statement.

Examples:

1) PUT\4,R,B\CHR$(255) would write 1 byte

2) GET\2\A$(~,11) would read 12 bytes

3) DIM B$(31)

PUT\4,9*Q+l\B$(-1) would write 32 bytes (see

rules on string subscripts)

4) C$ = STR$(7.~/2)

PUT\l\C$ would write 3 bytes ("3.5")

~

'-..--'/

~

/"

~

~

- 185

PRINT

The PRINT statement is used to output data to an

ASCII device (such as a line printer) or disk file by

writing in ASCII into a sequential or random file.

The general form for this statement is:

PRINT\file number, PI' P2\ [USING] eXPl' ... ,exPn

EXPl through eXPn may be a list of one or more numeric or

string expressions, string or numeric variables, or string

literals. Expressions in the list must be separated by

either semicolons or commas. The output format is identical

to the format instructions described under the general PRINT

and PRINT USING statements. For disk files only, PI is

equal to the record number and P2 specifies the byte number.

If parameter 1 is not specified, then the default procedure

is sequential access. If parameter 1 is specified and

parameter 2 is omitted, the P2 defaults to~. Specifying

a negative number for either parameter will result in the

default value being assigned to that parameter. For non-disk

files, PI and P2 may be optionally required and/or used by

some device drivers.

- 186

INPUT

The purpose of the INPUT command is to read data in

ASCII from a file. The general form of the command is:

INPUT[\file number, PI' piJ[string expression]

variable expressionl, ... ,variable expressionn[;]

The user may include either the file number and parameters

or the string expression (or neither) but not both (square

brackets refer to optional quantities). variable expressions

may be one or more numeric and/or string var~ables whose values

are read from a file or the terminal. The variable type

must correspond to the data type being INPUT. Expressions in

the variable list must be separated by commas. For disk files

only, PI is equal to the record number and P2 specifies the

by.te number. If parameter 1 is not specified, then the

default procedure is sequential access. If parameter 1 is spe-

cified and parameter 2 is omitted, the P2 defaults to ~.

Specifying a negative number for either parameter will result

in the default value being assigned to that parameter. For

non-disk files, PI and P2 may be optionally required and/or

used by some device drivers.

Examples:

1) INPUT\l\A,B,C$

In this example, the INPUT command instructs the

computer to read 7-bit ASCII data from file 1 into the

variables A, B, and C$.

~

'~

"---

:REM GET ONE CHARACTER

:REM PRINT IT (FOR EXAMPLE)

~

~

~

- 187

2) INPUT A

The absence of the file number parameter indicates

that input is to be read from the terminal. BASIC prompts

the user with a question mark and the entered numeric value

is placed in variable A.

3) INPUT "FILE NAME? »", F$

BASIC prompts with the string in quotes instead

of the question mark. The user's ASCII response is placed

in variable F$.

4) INPUT "PASSWORD »", P$(4,7) ~

BASIC will print the prompt PASSWORD » and then

place the first 4 characters of the user's response in

positions 4 through 7 of variable P$. The trailing semicolon

suppresses the echo of the user's input carriage return.

Using the "INPUT" statement will trap the following

control characters and will not transmit them any further:

Control - J (Line feed)

Control - L

(Form feed)

Control - M

(Carriage return)

Control - U

(Delete line)

Control - Z

(End of file)

Control - [

(Escape)

To circumvent this when using keyboard entry, the following

statements may be used and will transmit all characters:

10 NOESC

20 OPEN\l\"$SY"

30 GET\l\A$(O,O)

40 PRINT A$(O,·O)

- 188

3.2 FILE INSTRUCTIONS

BYE ~

The BYE command is used to get the user out of BASIC

and back into CDOS on disk systems or MONITOR on non-disk

systems. The general form of this command is simply:

»BYE

For disk systems, after the BYE command is typed in, the

computer will respond with the current disk drive.

Example:

»BYE

B.

In the example above, the prompt which appears after

BYE is typed in and the user hits carriage return is the

CDOS prompt of the current disk drive "B.".-"

For non-disk systems, BYE goes to location E~~8H

in the MONITOR.

~

'--.../"

~

~.

~

- 189

CREATE

The purpose of this command is to CREATE a CDOS

disk file (see the Cromemco Disk Operating System User's

Manual). The general form of this command is:

CREATE <string expression>

where the string expression is any valid file name.

Example:

CREATE "B:PAYROLL.NEW" will create the file

PAYROLL. NEW on the disk in drive B~

NOTE: No space is allocated to a file by the CREATE

command since all file space under CDOS is dynamically ..
allocated only when and where needed.

An error message results if the file already exists.

- 190

DIR

The DIR command corresponds to the CDOS DIR command

(see the CDOS User's Manual for a full description). The

DIR command lists disk files giving size (in K-bytes) and

number of extents. However, in BASIC, the file specifier

(if used) must be enclosed in quotation marks or must be

another valid form of string expression.

Examples:

DIR -- will list all files on the current disk.

DIR "A:*.*" -- will list all files on drive A.

DIR n*.SAV" -- will list all files on the current

disk with the extension "SAV".

~

,_./

'---..--

~

~

~

- 191

DSK

The DSK instruction prints the current disk drive. The

general form of the instruction is:

DSK or DSK "d:"

where d: is the drive (i.e., A,B,C,D). DSK "d:" changes the

default disk drive to the specified one. The d may also be

a byte value of 1, 2, 3, or 4 and the colon may be omitted.

For instance, DSK CHR$ (2) is equivalent to DSK "B:". Note

also that IOSTAT (~,~) will return the number of the current

disk (l=A:, 2=B:, 3=C:, 4=D:).

DSK "@" will log in a new disk after it has been inserted

into the disk drive (but will remain in BASIC) always making

Disk A the current drive. This is equivalent to typing

Control-C while in CDOS.

- 192

ENTER

The ENTER command is used to enter statement lines from

an external device or a disk file into the current program

storage area. The user should keep in mind that statement

lines being entered will replace current program statement

lines if the entering line numbers are the same as the

current line numbers. This command is frequently used

when a programmer wishes to merge two programs input at

different times into a single program.

The general format for this command is:

ENTER <string expression>

where the string expression is a file name.

Example:

ENTER "$RD" would enter the program listing

found on the reader device.

When using ENTER to overlay portions of running programs,

like line numbers in various overlays will cause most

efficient memory usage.

Caution: The ENTER statement can only be terminated

by certain errors and/or by receiving an ESCape request from

the console or the program being read in.

-----./

,---../

'----./

~

~.\

~

- 193

ERASE

The purpose of the ERASE command is to remove a file

from the directory. The general form of this command is:

ERASE <string expression>

where the string expression is any valid file name. All

files whose names match the specified file name will be

deleted.

Examples:

ERASE "DEMO" -- In this example, the file on

the current disk with the name DEMO will be

deleted.

ERASE "A:*.SAV" -- In this example, all files

on disk A with extensions "SAV" will be

deleted.

- 194

IOSTAT

The purpose of the IOSTAT function is to find the

current status of a file number specifier (where there can

be several different status values returned). The general

form of this function is:

IOSTAT (aexPl,aexP2)

where aexPl is the file number and aexP2 is a specifier.

The specifier requests the desired status value.

In particular, for disk files only:

1) IOSTAT (F,~) will return a 1 if an end

of file is detected on file F and a 2 if

attempting to read an unwritten file segment

in random access. A ~ is returned as normal

status.

2) IOSTAT (F,l) will return the current

sector number of file F.

3) IOSTAT (F,2) will return the current byte

number within sector number IOSTAT (F,l).

Other device drivers mayor may not return a status

value.

---../

----/

'-...../

~

- 195

LIST

The LIST command instructs the computer to print out

one or more statement lines to a file or file device. The

command may be used to output an entire program, a block of

statement lines within a program, or a single statement line.

The general format for this command is:

LIST [string expression] [nl[,n2J]

where the string expression is the name of a file and nl and

n2 are statement numbers in the file. When nl and n2 are not

specified, the LIST command will output the entire program.

If both nl and n2 are specified, the computer will list line

number nl through line number n2. If only nl is specified,

~

~

the program is listed from line nl to the end of the program.

When the LIST command is used, the current program is

automatically output to a file or file device in ASCII

format. A program output by the LIST command can be read

back into storage by the ENTER command.

Example:

LIST "LISTDEMO", 20, 200

In the example above, the computer is instructed to

list lines 20 through 200 to the file named "LISTDEMO".

LIST outputs an ASCII ESCape character as the last

output byte to enable files to be re-ENTERed properly.

[Note: SAVEd programs mayor may not be compatible between

various revisions of 16K BASIC. LISTed programs always areil

- 196

LOAD

Once a program has been SAVEd in binary format, the

LOAD command can be used to place the program into core

storage. In other words, the LOAD command reads a program,

which has already been SAVEd on an external storage device

(or disk file) into memory.

The general format for the LOAD command is simply:

LOAD <string expression>

where the string expression is the name of any valid device

or disk file.

Note: The LOAD instruction clears the user area before

moving the called program into the user area. It cannot

be used to merge or concatenate files. The ENTER instruction

must be used for these purposes.

~

'-../

~

~

r-',

-~-..,

- 197

RENAME

The purpose of the RENAME command is to give a new

file name to a file already in the directory. The general

form of the RENAME command is:

RENAME filenamel, filename2

where filenamel is the existing file and filename2 is the

new name.

Example :-

RENAME "DEMO","DEMOREN" -- In this example,

the file name DEMO will be replaced by

the file name DEMOREN.

- 198

RUN

The RUN command instructs the computer to execute

a specified program. The general form of this command is:

RUN <string expression>

where the string expression is the name of a file. If a

file name is not specified, the computer will execute the

program currently in memory.

Examples:

RUN -- starts execution of the program currently
in memory.

RUN "B:WUMPUS.SAV" -- LOADs program WUMPUS.SAV
from disk B into memory and then begins
execution.

BASIC may be entered from CDOS and requested to immediately

RUN any SAVEd program by entering:

BASIC <program name>

at the CDOS command processor's prompt.

To EXECUTE a BATCH command from BASIC, PRINT the desired

commands to a file called "A:BASIC.CMD" and then execute the

following program:

100 CREATE "A:$$$$.CMD"

200 OPEN\l\"A:$$$$.CMD"

300 PUT\l\CHR$(ll),"@ BASIC.CMD$"

400 CLOSE

500 DSK "A:"

600 BYE

You must specify the appropriate disk drive because "$$$$.CMD"

appears as a peripheral device to BASIC. "B:" could have been

used throughout the program above instead.

~

~

"---.../

~

~

~

- 199

SAVE

The SAVE command instructs the computer to store the

current program on disk or some other storage medium. The

computer "saves" a program by writing the program in

internal binary format to the disk or storage device.

The general form for the SAVE command is simply:

SAVE <string expression>

where the string expression specifies any valid device or

disk file name.

Examples:

SAVE "PGM2.SAV" -- instructs BASIC to save the

program in a disk file named PGM2.SAV on the

current disk.

SAVE "$PU" -- instructs the BASIC to save the

program on a punch device.

[Note: SAVEd programs mayor may not be compatible between

various revisions of l6K BASIC. LISTed programs always are!]

r-..

~

~,

~

- 200

4.0 EXAMPLES OF 16K BASIC PROGRAM STRUCTURE

This section includes several examples of programs

written in 16K BASIC. Working through one or more.of the

examples should provide the beginning programmer with a

better understanding both of how a problem is translated

into a computer program and of programming logic.

4.1 ACTIVE BANDPASS FILTER CALCULATION

One of the most elementary applications for a computer

is to use the computer to do calculations that can be done

on sophisticated hand calculators. A program written to

perform such calculations can be saved and reused as often

as required. An example of a simple calculation program

follows. This program allows the user to input data on

certain parameters associated with the design of an active

bandpass filter based on a common operational amplifier.

The program then calculates the necessary component values

based on the data.

The first three statement lines of the program are as

follows:

10 PRINT

20 PRINT "THIS PROGRAM CALCULATES DATA NEEDED TO

CONSTRUCT" ;

30 PRINT "ACTIVE BANDPASS FILTERS USING 741-TYPE

OP-AMPS."

- 201

The principal function of PRINT statements 20 and 30

is to document the program so that it can be run in the

future by users who are unfamiliar with the program. All

programmers should be encouraged to document programs

thoroughly.

The next step in the program is to request the user to

input a number of values for various parameters. Note that

each variable is defined in preceding print statements.

40 PRINT

50 PRINT "WHAT IS THE CENTER FREQUENCY OF THE PASS

~

BAND,IN";

60

PRINT "HERTZ(e.g. ,4000,250,60) "

70

PRINT '-.../'

80

INPUT F

90

PRINT

100

PRINT "WHAT IS THE DESIRED GAIN,IN DECIBELS?";

110

PRINT "(e.g. ,0,5,25) "

120

PRINT

130

INPUT H

140

PRINT

150 PRINT "WHAT IS THE DESIRED Q OF THE FILTER?"

160 PRINT

170 INPUT Q

180 PRINT

190 PRINT "SELECT A CONVENIENT STARTING VALUE C

FOR CAPACITORS Cl AND";
~

~

,r--,

~

- 202

200 PRINT "C2.IFTHEVALUE IS IN PICOFARADS,

ENTER THE DATA"; 210

PRINT "IN THE FORMAT:X ...E-12.IF THE VALUE

IS MICROFARADS,"; 220

PRINT "USE THE FORMAT:X ...E-6."

230

PRINT

240

INPUT C

In this schematic formula, Cl and C2 are equal. Once

a value for C is specified, the resistor values can easily

be found. The next step then is to specify the formulas

for each resistor value, as indicated below:

250 PRINT

260 PRINT

270 PRINT

280 PRINT "RESISTANCE IN OHMS"

290 PRINT

300 PRINT

310 LET W = F*2*3.14159

320 PRINT "Rl", Q/(H*W*C)

330 PRINT "R2", Q/«(2*Q*Q)-H)*(W*C))}j

340 PRINT "R3", (2*Q) / (W*C)

350 PRINT "R4", 2* «2*Q) / (W*C))

- 203

These formulae for RI, R2, R3, and R4, specify the

actual calculations which must be performed after the para­

meter values are input in order to determine the various

resistances. The final section of the program provides

a simple routine which allows the user to easily re-enter

the program and input a new set of values.

360 PRINT

.~

370 PRINT

380

PRINT "WOULD YOU LIKE TO CALCULATE ANOTHER FILTER?"

390

PRINT "TYPE Y FOR YES."

400

PRINT

410

INPUT A$

420

PRINT .~

430

PRINT

440

450

460

PRINT

IF A$(~,~)="Y"

END

THEN GOTO 40

If the user does not wish to do another filter calculation

and consequently types in a string starting with a character other

than Y for A$, then the program ends and the terminal returns

to the text input.mode for l6K BASIC.

Note that the variables in this program are given letter

symbols that correspond to their function. For example,

it is surely easier to remember that the 'Q' of the filter is

represented by variable Q than by variable L. Similarly,

'---../"

~

~.

- 204

the variable for capacitors Cl and C2 is C, rather than

X or Y. These may seem to be intuitively obvious at this

level of complexity, but as the program complexity increases

the assignment of appropriate variable names becomes much

more difficult.

Once the program has been input, we can instruct

the computer to execute the program by typing in RUN.

The following output will be generated:

RUN

THIS PROGRAM CALCULATES DATA NEEDED TO CONSTRUCT
ACTIVE BANDPASS FILTERS USING 74l-TYPE OP-AMPS.

WHAT IS THE CENTER FREQUENCY OF THE PASS BAND, IN
HERTZ (E.G., 4000, 250, 60)

?1000

WHAT IS THE DESIRED GAIN, IN DECIBELS?

?20

WHAT IS THE DESIRED Q OF THE FILTER?

?100

SELECT A CONVENIENT STARTING VALUE C FOR CAPACITORS Cl AND
C2. IF THE VALUE IS IN PICOFARADS, ENTER THE DATA
IN THE FORMAT: X E-12. IF THE VALUE IS MICROFARADS
USE THE FORMAT: X E-6.

?1.0E-6

RESISTANCE IN OHMS

~

RI
R2
R3
R4

795.77538762219
5.00003l4l60973E-03
31831. 015504887
63662.031009774

- 205

WOULD YOU LIKE TO CALCULATE ANOTHER FILTER?
TYPE Y FOR YES.

?NO

460 END

~

~

'--./

90G -

~
'-.-/-

~
~~ ~

~~ ~~ .~
~

~~

'I
t'-

~ - I ••••••~N'\~
"-

\-

~~~

':) ~s
~~

~ -~ ~ ~



- 207

4.2 STATISTICAL ANALYSIS PROGRAM

Another common use for a computer is the calculation

of statistics for a given set of data -- particularly very

large data sets. The program listed below calculates six

common statistics for a given data set.

One of the first steps that must be taken in any

program is the assignment of variable names to any variables

which will appear in the program. The following program

involves six functions which will require variable names.

These functions and the corresponding variable name used

in the program to represent each function are listed below:

Variable Name Function

~

N

S

T

M

V

D

Number of elements in a data set

Sum of the numbers in a data set

Sum Squares

Mean

Variance

Standard Deviation

~'

We can instruct the computer to calculate the number of

elements in a data set by including a "counter" variable in

the program. In this case, the "counter" variable is N. To

count the number of elements, we set N equal to ~ initially

and then increment N by 1 each time a new element in the

data set is READ. Consequently, the first statement lines

are used to initialize (set equal to ~) certain variables.

~



~

- 208

10LET N = 53

20

LET S = 53

30

LET T = 53

Note that Sand T are also set equal to 53.

This will allow

us to sum data elements and to sum the squares of data

elements as these elements are READ. We can now begin

reading in data elements.

~,

40

50

60

70

80

90

100

READ X

IF X = 999 THEN GOTO 100

LET N = N + 1

LET S = S + X

LET T = T+(X*X)

GOTO 40

IF N = 53 THEN GOTO 300

~.

The value 999 is used as a "dummy" value to indicate the

end of a data set. The program continues to read in data

and increment the values of the variables N, S, and T until

a 999 is read from a DATA statement. Once a 999 value is

read in, program control is transferred to statement line 100.

Statement line 110 through 130 compute the remaining

three statistics.

110 LET M = SIN

120 LET V = (N*T-S*S)/N/(N-1)

130 LET D = SQR (V)



- 209

'-.-/
Next we include a set of titles to be printed out with

each statistic.

140PRINT

150

PRINT

160

PRINT"NUMBER" ,"SUM","SUM SQUARES"

170

PRINT N,S,T

180

PRINT

190

PRINT"MEAN" ,"VARIANCE" ,"STANDARD DEVIATION"

200

PRINT M,V,D

210

PRINT

220

PRINT

230

PRINT

240

PRINT

At this point,

all the statistics have been calculated

for a set of data. Program control is therefore returned

to the first statement in the program for that the next set

of data can be read.

250GOTO 10

260

DATA 1,2,3,4,5,6,7,8,9,10,999

270

DATA 2.3,2.4,2.5,2.6,2.7,2.8,999

280

DATA 10,15,29,28,12,44,5.5,2.2,999

290

DATA 999

300

END

Once this program has been entered,

edited,and

'--./

examined for errors, it can be RUN. The results are as

follows: ~



~

RUN

NUMBER

10

MEAN

5.5

SUM

55

VARIANCE

9.1666666666666

SUM SQUARES

385

STANDARD DEVIATION

3.0276503540975

- 210

NUMBERSUMSUM SQUARES

6

15.339.19

MEAN

VARIANCESTANDARD DEVIATION

2.55

0.0350.18708286933869

NUMBER

SUMSUM SQUARES/'"
8

145.74065.09

MEAN

VARIANCESTANDARD DEVIATION

18.2125

201. 6469642857114.200245219211

***300 END***

~



- 211

4.3 DEMONSTRATION PROGRAM

The program listed on the following page demonstrates

BASIC's abilities to PEEK, accept HEX input, and perform

logical operations. This program also uses a wide range

of BASIC commands which the user is encouraged to examine

carefully.

~

~

~



- 212

~

:1.0 REI"i
~·~OHU"i DEI"iI]NSTI~:{HJ)JN PI~:DGF':I~IM.-..-.-- PI:WDUCES HEX i"IU1DI~:Y I)U~iP
:JO 1;:El'i

'10 PF~:rNl'lI THIn PF~OGI~:M1DEt1DNSTI;:'~ITEB BfiE;:rc I S {~Enl..rr:n::s TO PEn::!, n
''1:1. PRJ::NTU fiCCEPT HEx: :rNPUr!, tlND PEF~FCiF':r1I...OGI:C{~L UPEF.:.t.IT:IONS11

~:iO SET O!I BO

,~)O DUi G!~J;( :I.00 ;.
70 nnEGEh: f~!,:r,C
::J 0 DUi ,::d;( :I.:7.;) :: ,t.I~;==U 0:1.:,~:::·("}:::i<J7:::!9{~E:CDEFn
90 PFUNT
:I.00 F;:Er1
:1.:1.0 F~Ei"l GET UbEF': I !:; E>T,::.I~:T:CI\!GfiDDF~ES::;
:1.~~0 1~:Et1
:1.25ON ESC GOTO 9000
:I. ~!:? (11 ~ (11 :: (11

:1.30 [N·:=:II~{.u t I:NPUTnENTEF~ !:;;TMnJ:NG .~I[)[)h:ESB FCm DUt1P eTI\! HDn »" !'ChHl)
:I.::~!5 ON E:::>C GUrO :I.0 0
:1.40 Q$(LEI\!(Q$»="%"
:I.:::;0 :1>::',)j::.L. ( (N· )
:1.E: 0 (~ : (~ : (~

:1.(/0 C::=O

~~O0 HEi"1
~~:I.(I HEi"l PF':Un HUilYING FDH NEXT L:INE
Z~~O 1~:Er1
~~::::0 fi::::E:IN,::,ND<: :r, I~FF (I 0/; )
:?./to .~I::::E:::n'lf~ND( ::~0 OFF::{. , '~I/~{.O100 /:;)
~~::.:.d)GD::;UB ';>00
:?60 ,t.1 ::::B:r:N ,~~NI) ( :J:: !I :~; 0 0 F F~>':;.
~~70 GUm.IB 900
ZBO PI:'::INT 11

30 0 HEi"1
TI. 0 HEN PI:'::nn L.I:NE DF HEX D{H,::,
:]~~O 1~:Et1
T:::0 FOH ,..1:=::1. TO :I.6
::HO f~=::PI::HU::O : 1><[+:1.
~3::;0 GOSl.J1::: ~i00
:J60 PI:n:NT 11 11 t
:31:::0 NE)(T.j
:]90 :I::::J·-·:l.6 : PF;:INT 11

'10 0 HEi"\
'1:1.0 F~Ei"l PRINT ::;{~,r1EL:I:NE f~E; {~nc::n: CH('~F~,::,CTEt=.:::;
·•..}~~O 1~:Er1
'1::;:0 FCm ,..1::::1 TO :1.6

'(1'+0 f~::::BTW~ND(PEEI-( <: :r:) !' ~:{.() 07F :::;) :: J:::::J +:1.
,~:::;0 c;H;::::11 • n :: :IT '~'>/~O 0 1 F~{.·rHEN :IT ,::,.:::1:: 01)7F~{'THEN ('!~;::::CHF~~I;(I~:I;.
·(·160 Pf([NT CHi ( 0 ,0;' ;,
'F (I I\!I:::)(T ,..I
'('!BO PRINT
~5I) () F~Ei"1

~5:1.0 F~Ei"j Sh~IC:(NG CUNTF~DI...
~.:;~~0 F;:Ei'1

530 C=C+l S :IF BINAND(C,%0007%)=O 'rHEN PRINT
~::j90 GOT!) ~~OO

900 RE::i"\

9:1.[I F~Ei"l TI··ITS bUBF~DI..rr:INE PFi::nfTb l~~D HEX DTG:ITS FF:OI"i CONTFNT:~; OF {~
':?~~0 r;:Er1
9:::: 0 PI<INT Itl~;';E::nH:IND (fi , ::0) 0 F ()::~:;./~:::00:1. 0 :\:;!I '-':i ;. ,> ,::.-:1; (BTNfiND ( {i!' :~:() I) [I F:::: ;. !' ,-,:1.;. :,
':';>9 0 I~:ETUI:;:N
9 I) 00 F~EI'i
9010 F':EI'i com:: HERE DN [se Fh:CWi J:NPUl bT,YTEi"IENT
':.;>0:;::0 F;:EYi
90:30 END

/"----

~

11 •••:'

11 ,.t

1
J





~

- 213

APPENDIX A: BASIC ERROR MESSAGES

FATAL ERRORS

STAND
ALONE
BASIC
ERROR
CODE

DISK BASIC
ERROR

NUMBER MESSAGE MEANING

~,

.~

SY

US

#A

NA

IL

1

2

3

4

5

Syntax

Using Syntax

Number of
Arguments

No Disk in
System

Illegal
Statement

This error covers a multitude of
errors which can occur when the
user is entering (typing in) a
program. For example:
Unmatched parentheses: A=(B*(C)
Misspelled words: PIRNT A
Wrong data type: A$=3*A
Bad punctuation: PRINT A(7i2)
etc.

Because there is only one message
for all these errors, a dollar
sign is printed under the line in
error at a position approximately
indicating where the error was
detected.

The format string for a PRINT USING
statement is in error. For example:
PRINT USING"#.##!!!",3.2E9
(only 3 exclamation marksi 4
required)

A function call requires a dif­
ferent number of arguments than
the number passed to it. For
example:
DEF FNA(X,Y)=X+Y
PRINT FNA(J)

In a stand-alone system, a
request for a disk-only function
was made.
e.g., OPEN\l \"LP"
(presumably the user meant "$LP")

1) This can be caused by entering
a line with a syntax error and
then RUNning the program without
correcting the line .

2) In certain systems, certain
statements can be declared invalid.
For example, POKE might be illegal
in a time-sharing system.

_J



- 214

FATAL ERRORS (cont.)

STAND
ALONE
BASIC
ERROR
CODE

DISK BASIC
ERROR

NUMBER MESSAGE

~

MEANING

'---/'

PS

#G

# (

RT

NX

FU

DV

L#

SS

6

7

8

9

10

12

13

14

15

Print Item Size

Too Many GOSUBs

EXP Too Complex

Return, No GOSUB
Active

NEXT Without FOR

Function not
Defined

DIMension
Statement Error

GOTO/GOSUB
Undefined Line
Number

Subscript Values

An attempt was made to print a
single item which required more
characters than the current page
width.
e.g., SET ~,l~

PRINT "LOTS OF CHARACTERS"

Subroutines are nested within
subroutines to a depth which
exceeds that allowed by BASIC.

Too many levels of expressions,
too many parentheses or function
references.

The program has no place to return.
This can be caused by deleting a
line with a GOSUB statement and
then encountering its RETURN
statement.

FOR and NEXT statements must be
paired. This error may occur if
a line containing a FOR statement
is deleted.

A user function is referenced
by the program but has not been
defined. If the line containing
the DEF FNs(X) is deleted, the
function is no longer defined.

Invalid argument(s) in the
DIMension statement. For example:
negative numbe~ DIM A (-20)
too many subscripts: DIM B (5,5,5,5)

A GOTO or GOSUB statement refers
to a line that does not exist.

The values assumed by subscripts
must be less than those in the
DIMension statement.

~.



~ FATAL ERRORS (cont.)

- 215

STAND
ALONE
BASIC
ERROR
CODE

DISK BASIC
ERROR

NUMBER MESSAGE MEANING

~

~

#S

EL

SZ

16

101

102

Number of
Subscripts

End of Statement/
End of Line

Array or String
Space Overflow

The number of subscripts associated
with a variable must match the
number of subscripts in the
DIMension statement.

This is an internal BASIC error ­
please document and call CROMEMCO.

There is not enough memory to
store the array or string.

J



USER TRAPPABLE (NON-FATAL) ERRORS

- 216

STAND
ALONE
BASIC
ERROR
CODE

DISK BASIC
ERROR

NUMBER MESSAGE

~

MEANING

t

NF

FN

CM

FO

NO

F#

OP

FS

NA

NA

128

129

130

131

132

133

134

135

136

137

File Not Fnd

Filename

Invalid Cmd for
Device

File Already Open

File Not Open

File Number

Cannot Open
File

No File Space

File Mode Error

File Already
Exists

File not found on disk (file not

in directory) or the device name
is not in the device directory
list.

A disk file name was used in a

Stand Alone System or an illegal
file name was passed.

A command was given to a device
which that device was incapable
of performing. For example:
a read command given to a line
printer.

An OPEN command was given to a
file which was already open.

A read or write was attempted
using a file which had not been--.-/
OPENed.

The file number requested was
outside the allowable range. The
file number must be greater than
o and less than or equal to the
maximum channel number.

A message from the device driver
(or CDOS). (A non-zero statement
returned on OPEN.)

All files in use. The system
must have one unused channel to
do a LIST, ENTER, SAVE, or LOAD.
CDOS only - no more space on disk
(or there are 64 directory entries)

A READ was attempted from a write
only file or vice versa.

An attempt was made to CREATE a
file that already exists.

'-----"



Y"',.
- 217

USER TRAPPABLE (NON-FATAL) ERRORS (cont.)

STAND
ALONE
BASIC
ERROR
CODE

DISK BASIC
ERROR

NUMBER MESSAGE MEANING

r

NA

NA

NA

NC

HX

BO

FA

IN

IN

DM

138

139

140

141

200

201

202

203

204

205

File Read: No
Data

File Write

File Positon

No Channel
Available

Invalid Hex
Number

Integer Overflow

Function Arg
Value

Invalid Input

Input

Not Dimensioned

End of file read, or, for random
access only, an attempt to read
a portion of the file which has
not been written.

A message from CDOS - an attempt
was made to write to a protected
disk.

An attempt was made to read a
negative file record or a record
larger than 240K bytes.

All I/O channels in use. (The
maximum number of channels is
system dependent.)

Invalid hexadecimal number. Hex­
adecimal numbers must contain only
the characters 0 through 9 and
A through F.

A value greater than 32767 was
assigned to an integer variable.

A function was called using an
illegal argument. For example:

SQR ( - 2) •

An attempt was made to INPUT
non-numeric data into a numeric
variable.

An attempt was made to INPUT more
items than were called for in the
INPUT instruction.

A reference was made to a sub­
scripted variable which had not
been dimensioned.

f'

ND 206 No Data Statement An attempt was made to READ past
the end of the DATA supplied.
Either there was a READ with no
DATA statement or there were not
as many items in the DATA statement
as in the READ list.

------- __ .J



- 218

USER TRAPPABLE (NON-FATAL) ERRORS (cont.)

STAND
ALONE
BASIC
ERROR
CODE

DISK BASIC
ERROR

NUMBER MESSAGE

"--"

MEANING

DT

E#

LL

NA

OV

207

208

209

210

250

Data Type
Mismatch

Number Size

Line Length

Input Timeout

Overflow/
Underflow

An attempt was made to assign
a string value to a numeric
variable or vice versa. For
example: A$(1)=5.

An attempt was made to assign
a value outside of the range
9.99E+62 to 9.99E-65 to a
variable.

A line longer than 132
characters was entered.

See the SET instruction for
information about this error.

An operation produced a number
outside of the range 9.99E+62
to 9.99E-65. For example: A=l/O. '
An integer variable which is ~
assigned a value less than -32767
can also give this message .

.r-,.
'J



APPENDIX B: ASCII CHARACTER CODES

- 219

,~

Decimal
CharacterDecimalCharacterDecimalCharacter.

000

NUL043+086V
001

SOH044 087W
002

STX045-088X
003

ETX046 089Y
004

EOT047/090Z
005

ENO0480091[
006

ACK0491092\
007

BEL0502093]
008

BS 05130941
009

HT 0524095-
010

LF 0535096
'"

011
VT 0546097a

012
FF 0557098b

013
CR 0568099c

014
SO 0579100d

015
SI 058 101e

016
DLE059 102f

017
DC1060<1039

018
DC2061=104h

019
DC3062>105i

020
DC4063?106j

021
NAK064@107k

022
SYN065A108I

023
ETB066B109m

024
CAN067C110n

025
EM 068D1110

026
SUB069E112P

027
ESCAPE070F113q

028
FS 071G114r

029
GS 072H115s

030
RS 073I116t

031
US 074J117u

032
SPACE075K118v

033
! 076L119w

034
" 077M120x

035
# 078N121Y

036
$ 0790122z

037
% 080P123{

038
& 0810124I

039
,
082R125}

040
( 083S126

~
041

) 084T127DEL
042

. 085U

~

LF = Line Feed FF = Form Feed CR = Carriage Return DEL = Rubout





~

- 220

APPENDIX C: ADDING DEVICE DRIVERS TO BASIC

Declaring Device Drivers

All I/O devices to be accessed from BASIC must be

declared in the device driver list. This list starts at

location DDLIST* and each entry is 8 bytes long. These

entries are of the following form:

------.

byte ~

2

4

6

device name
(ASCII)

first letter
second letter

base address of device driver
LSB

MSB

may be used for device dependent

information needed by driver

reserved
byte 1

3

5

7

The device name (bytes ~ and 1) is used for finding

the. correct device to OPEN. For example, OPEN\2\"$LP"

would instruct BASIC to search the device driver list for

device name "LP" (the $ indicates a device instead of a

disk file). The driver's starting address (see definition

below) occupies the next two bytes. The following two bytes

* Actual addresses and equated value may vary depending
on both revisions and which version of BASIC is being used.

J



- 221

are reserved for use by the driver and their function(s)

are defined by the person programming the driver.

NOTE: This device driver list can be placed in PROM.

These two bytes are thus not intended as temporary

storage areas.

A typical use of one of these bytes might be to

hold the actual device address to be accessed. This would,

for example, allow a general purpose TU-ART driver to drive

several ports each dedicated to a different device.

The last two bytes of each table entry are reserved

for future use. The table itself is terminated by the

first nul driver name ~Hex ~~ in the first character of

the name).

Rules for Device Drivers

The actual device drivers must follow certain

prescribed rules. In particular, the first 16 byte

locations in the driver must contain address pointers

to the various routines (some of which are required) in

a BASIC driver. The 16 bytes define the addresses of

8 different routines as shown in the following table:

,-'
---

~

"Z_



--

(LSB) (MSB)

- 222

r---

Byte ~

2468101214

address of OPEN routine

address of CLOSE routineaddress of SET STATUS routineaddress of GET STATUS routineaddress of PUTC routineaddress of GETC routinereserved

(should be ~)

reserved

(should be ~)
Byte 1

3

5

7

9

11

13

15

~

If any of the routines noted aQove are not defined

for a given driver, the corresponding address field should

be set to ~~~~H. However, if a routine is (or must be -­

see below) defined but does not do anything, the

corresponding address must contain the address of an XOR A/RET

instruction sequence.

A description of what must be accomplished by the

various routines follows. Parameters which may (or must) be

passed between BASIC and the driver routines are always

passed in registers, or in the Extended File Control Block (EFCB).



- 223

Most of the information needed by the driver sub-

routines may be obtained from (or saved in) the Extended

File Control Block (EFCB).

Register usage is covered in the description of

each "command" routine below:

OPEN: This routine should perform any processing
required to initialize the device. For
example, a line printer driver would
typically issue a form feed on open.

On Entry: (AI) = no. of parameters (~,l,or 2)
(IY) = ADDR of EFCB
~, 1, or 2 parameters are passed
to the routine in locations EFCBPl
and EFCBP2 of the EFCB.

On Return: A ~ ~ says can't open

CLOSE: This routine should perform processing
necessary to "shut down" the device. For
example, a paper tape punch driver might
punch out a trailer piece of tape.

On Entry: (IY) = ADDR of EFCB

On Return: A ~ ~ says can't close

~

,
~

PUTC:
GETC: These routines perform byte-by-byte transfers

to and from the device. Devices requiring a
buffer may use the buffer (and/or extended
buffer) in the EFCB.

On Entry:

On Return:

(IY) = ADDR of EFCB
(A) is character to be written (PUTC only)

(A) used for character read (GETC only)

~:



- 224

SPOS: (SSTAT)
This routine is used to set the "status"
of the device. For example, a DAZZLER
driver might use this to set the X/Y screen
position.

On Entry: (AI) = no. of parameters (~,l,or 2)
(IY) = ADDR of EFCB
~, 1, or 2 parameters are passed to
the routine in locations EFCBP3 and
EFCBP4 of the EFCB.

On Return: A ~ ~ says invalid status request

GPOS: (GSTAT)

On Entry:

On Exit:

(IY) = ADDR of EFCB
(AI) = which status is requested

(HL) contains appropriate status
value

NOTE: Registers IX and IY cannot be changed by any of these
routines.

The EFCB referred to has the following format:
,.---

EFCB

EFCBDA

EFCBDD

EFCBPl

EFCBP2

EFCBP3

EFCBP4

DS 1

DS 2

DS 2

DS 2

DS 2

DS 2

DS 2

;O=not in use, 1= in use (For use by;Device Driver Address, bytes 2&3 from DDLIST <-BASIC only

;Device Dependent info, bytes 4&5 from DDLIST

;\These are the two optional parameters

;/Pl & P2 as used in the "OPEN" statement

;\These are the 2 optional parameters PI & P2

;/used in PUT, GET, PRINT, and INPUT statements

BUFFER DS 179 ;Available to user for accumulating individually
;passed bytes into a buffer

..~

When the proper DDLIST entries have been made as shown, operation

of the driver is as follows:



- 225

OPEN\l,A,B\"$DR"

PRINT\l,X,Y\"HELLO"

INPUT\ l\A$

A = IOSTAT(l,n)
where 0=n=255

CLOSE\l\

Calls the OPEN routine of driver "DR".
EFCBPl = A, EFCBP2 = B
A' register = 2, IY= ADDR of EFCB
If OPEN is not needed, it must consist
of an XOR A, RET sequence.

The Set Status routine of "DR" is called
with EFCBP3 = X, EFCBP4 = Y
(X and Y are converted to integers first).
A' = 2, IY = ADDR of EFCB
An XOR A, RET sequence should be executed
at the completion of Set Status.

Next, the PUTC routine of "DR" is called
7 times, once for each character to be
transmitted plus once with a Carriage Return
and once with a line feed.
A = character, IY = ADDR of EFCB

Set Status routine of "DR" is called with
EFCBP3 = %FFFF%, EFCBP4 = %FFFF%,
A' = 0, IY = ADDR of EFCB
An XOR A, RET sequence should be executed.

Next, the GETC routine of "DR" is called
repeatedly, expecting one byte to be
retu~ned in A. This continues until a
terminator (CR,LF,FF,NULL) is transmitted,
or until more than 132 characters have
been transmitted.

The Get Status routine of "DR" is called.
A' contains n, the requested status
parameter and IY = ADDR of EFCB. The
status value to be returned should be
placed in HL. An XOR A, RET sequence should
be executed last.

The CLOSE routine of "DR" is called. If
CLOSE is not needed, an XOR A, RET sequence
must be provided.

~

"~

L

Note that if PUT and GET were used in the above calls instead of

PRINT and INPUT, binary bytes would be transmitted according to

variable type and no carriage control information would be sent.

I.E., PUT\l\V would transmit two bytes if V is an integer, four

bytes if V is short floating point, and eight bytes if V is long

floating point. No carriage return or line feed is sent. Also

note that PRINT\l\"A","B" will not transmit the comma but will send

the proper number of spaces to place "B" in the next tab field.

'~



DDLIST -- DEVICE DRIVER LIST - VERSION 4.0

- 226

~

ADDRCODE-- --J ; NOTE: THE ADDRESSES SHOWN IN THIS LISTING MAY VARY FROM VERSION

. TO VERSION, but the format is identical.
The actual starting

address may be found in locations 0412, 0413 for CDOS BASIC and 8012, 8013 for Stand Alone BASIC
DDLIST: 4B6c

53 DDCNSLDB'SY' ;'SYSTEM' = CONSOLE
4B6D

59
4B6E

E84A DWDRTUART
4B70

00 DB0,0
4B71

00
4B72

00 DB0,0
4B73

00
4B74

54 DBIT5' ;2ND TUART PORT
4B75

35
4B76

E84A DWDRTUART
4B78

50 DB50H,50H ;BOTH BYTES GET ADDR OF 2ND TUART
4B79

50
4B7A

0000 DW0 ;RESERVED BY SYSTEM

CDOS SYSTEM PUNCH, READER, AND LIST DRIVERS

4B7C
50 DB'PU'

4B7D
55

4B7E
9c4A DWDRCDPU ;CDOS PUNCH DRIVER

4B80
0000 DW0

4B82
0000 DW0~ 4B8452 DB'RDI."

I

4B8544~ .. 4B86B54A DWDRCDRD ;CDOS READER
4B88

0000 DW0
4B8A

0000 DW0
4B8c

4c DB'LP'
4B8D

50
4B8E

cA4A DWDRCDLP ;CDOS LIST DRIVER
4B90

0000 DW0
4B92

0000 DW0
4B94

00DDEND:DB0 ;END OF DDLIST-NOTE: IF DDLIST IS
EXTENDED, THIS NULL

should be

overwritten and then placed at endof new DDLIST4B95
DEFS64 ;RESERVE SPACE FOR MORE DRIVERSFFFF
IFSOSVER ;----------------------------

DW
!DUMMY

ELSE
;-------------------------~-----------

~~
h

~.

~<j



- 227
CDOS PUNCH, READER AND LIST DRIVER INTERFACES - VERSION 4.0

ADDR CODE

; SAMPLE DEVICE DRIVERS I:)-- -- ''>---,-"--.:/

PUNCH

DRCDPU:
4A9C

E64A DW!DUMMY

4A9E

E64A DW!DUMMY

4MO
E64A DW!DUMMY

4M2
E64A DW!DUMMY

4AA4
Ac4A DW!PUPC;PUNCH PUT CHARACTER

4M6
0000 DW0

4M8
0000 DW0

4AAA
0000 DW0

; 4MC
5F !PUPC:LDE,A ;GET CHAR TO E REG AS CDOS EXPECTS

4AAD

OE04 LDc,4 ;CDOS PUNCH ENTRY
!PULPJ: 4AAF

F5 PUSHAF

4ABO
CD0500 CALLCDOS

4AB3

Fl POPAF

4AB4
C9 RET

; ;DRCDRD:4AB5
E64A DW!DUMMY

4AB7

E64A DW!DUMMY

4AB9

E64A DW!DUMMY I '"-,,

4ABB
E64A DW!DUMMY

4ABD
0000 DW0

4ABF
C54A DW!RDGC;RDR GET CHAR ROUTINE

4ACl

0000 DW0

4AC3

0000 DW0

; !RDGC:4AC5
OE03 LDC,3 ;CDOS READER GETC ENTRY PARM

4AC7

C30500 JPCDOS ;READY TO GO ... CHAR RTND IN A

DRCDLP: 4ACA
DF4A DW!LPOP;OPEN ROUTINE

4ACC

E64A DW!DUMMY

4ACE
E64A DW!DUMMY

4ADO
E64A DW!DUMMY

4AD2
DA4A DW!LPPC;AND LP PUTC ROUTINE

4AD4

0000 DW0

4AD6
0000 DW0

4AD8
0000 DW0

!LPPC:4ADA
5F LDE,A ;MOVE CHAR TO E

4ADB
OE05 LDC,5 ;CDOS LIST WRITE ENTRY PARM

4ADD

18DO JR!PULPJ

lLPOP:4ADF
3EOC LDA,ASCFF;ISSUE A FORM FEED ON OPENING FILE

4AEl

CDDA4A CALLlLPPC ! "-

4AE4

AF XORA "--./

4AE5

C9 RET ;RET WITH 0 STATUS

lDUMMY: 4AE6

AF XORA

4AE7

C9 RET



~
l

0.I,.

- 228

TU-ART I/O PORT DRIVER

Note that there is a general purpose TU-ART serial

I/O port driver in the DDLIST called "T5". It assumes a

TU-ART addressed at port 50H and may be used for any serial

device provided the baud rate is initialized prior to its

use with an "OUT" statement.

Example:

10 OUT %50%,4 : REM SET TU-ART TO 300 BAUD

20 OPEN\2\"$T5" : REH SETS UP DEVICE #2 FOR SERIAL I/O

The driver for the system console at port !if is labeled "$SY".

To switch between the console and a second terminal:

20 OPEN\l\"$SY"

30 OPEN\2\"$T5"

This will allow you to later say PRINT\A\"MESSAGE", where A

can be changed via software to be 1 for the console and 2

for another terminal .

. ' /,<

;"""'" t..tr:.f"

f PI) ..I

:t !<b
,1 LPI

h a
tc.J.<·/·· •.d/i

f'~"fvIr~/~
.ti"".J:2•..

"r:iI<t",i...r;- •

~~
'--"".)

117-0

J 5 ()
, t,

'2 () 0
-, ./1 r"1~'•.:'-'''1 .....

" •..,) .•.

~()(

'j... "-4 . >I. - I
'61
~
.:J

~

c

• .,1

"" (.,'"'~
ft,

.....'"' ~~/-»'" t
J'

J



- 229

CHANGING THE NUMBER OF I/O CHANNELS

BASIC carries 4 I/O channels in addition to the console.

One I/O channel is needed for each file which is OPENed at

the same time. Each I/O channel occupies 192 bytes of memory.

If you wish to change the number of channels in use,

type the following commands while in BASIC:

"-

Disk System

POKE%416%,X

A=USR(%400%,O)

Stand Alone System

POKE%8016%,X

A=USR(%8000%,O)

»BYE

where X is the number of I/O channels desired in addition to

the console. The POKE command puts the number of channels

desired into the proper location and the USR function re-

initializes BASIC.

On a disk system, you can now save this new version of
I

BASIC by returning to CDOS and saving it:
I

I

I

A. SAVE BASIC1.COM 76
I

,I ."". ~
~.

/
'-



~,

- 230

APPENDIXD:

CROMEM:X)16KZ-80 EXTENDEDBASICAREASOF USERINTEREST

Note: 1. In the address field, XXstands for: 04 if you are using COOS
80 if you are using SOS

2. COOSis CROMEM:ODISKOPERATINGSYSTEM
SOSis STANDAIDNEOPERATINGSYSTEM

Hex .Address No. of Bytes Version Description

~~ 3 COOS A jurrp (JP) to the routine where BASIC
uses the address of the bottom of COOS
to establish the top of user program
space.

SOS A jurrp (JP) to the routine which uses
repeated RETURNcharacters to initialize
the band rate. After baud rate is
established, BASICautomatically "sizes"
RAMrrerrory (starting at location ~)
to establish top of user program space.

~.
I

.,:

r'

XX~3

XX$6

~9

XX~C

3

3

3

3

Both

Both

Both

COOS

SOS

A jurrp (JP) to a point in BASICequivalent
to a request to enter a new program
line. Does not destroy program
currently in rrerrory.

A jurrp (JP) to a point in BASICequivalent
to issuing a SCRatch corrmand. Does
not re-size rrerrory.

A jurrp (JP) to a point in BASICequivalent
to the point reached via the jurrp
at XX~~except that rrerrory sizing
and baud rate initialization do not
take place. On entry here, the HL
register pair should contain the
address to be used as top of user
program space, and the A register
should contain the number of file
channels to allocate.

An illegal instruction (FF Hex,
actually a RST38H), which COOS
traps and uses to display an error
rressage.

A jurrp (JP) to the "IL" (Illegal
comnand) error rressage.



--- --

- 231

CROMEM:O16K Z-80 EXTENDEDBASICAREASOFUSERINTEREST ~

HexAddress No. of Bytes Version Description

Both If a CROMEMCOrronitor resides in
PROMat EfJ'fJ'fJ' Hex, these 3 bytes
should be changed to a jump (JP)
to the breakpoint handler in the
rronitor. In case of failure in
BASIC,the breakpoint inforffi3.tion
thus displayed might prove extrerrely
valuable.

SOS A jump (JP) to location EfJ'fJ'8 Hex,
the warrnstart point in the CROMEM:O
rronitor. Used by the 'BYE' COImBI1d
to exit to the rronitor. CAUTION:
,BYEI should not be used in systems
without a rronitor.

XX¥fF

XX12

XX14

XX14

3

2

2

2

COOS

Both

COOS

SOS

A jump (JP) to the COOSwarm-start
at address fJ'fJ'fJ'fJ'. Used by the 'BYEI
comnandto return to COOS.

The address pointer used by BASIC
to locate the beginning of the
Device Driver LIST. The user may
use this address to find the DDLIST
or may change it to force BASICto
use an alternate DDLIST.

The address pointer to the beginning
of the ERRORMESSAGE.The fOrffi3.t
of error rressages in rrerrDryis as
follows :

3 Bytes -- Call to error printer
1Byte -- Error number
n Bytes -- ASCII rressage, terminated

by a fJ'fJ' byte.

3 Bytes -- Call to error-printer
2 Bytes -- The error code, second

byte first.

The address pointer to the beginning
of the ERRORMESSAGES.The format
of error rressages in rrerrDryis as
follONs:

3 Bytes -- Call to error printer
2 Bytes -- The error ccxie, second

byte first.

-

/"--

"'-"



---.,

- 232

CROMEM:O16KZ-80 EXTENDEDBASICAREASOFUSERINTEREST

Hex Address No. of Bytes Version Description

XXl6 I B The maximumnumber of channels which
can be used. The default is 4.

XXl7 I B The number of characters per line.
The default value is 80. See SRI'
instruction.

XXl8 I B The number of characters per TAB
position. The default value is 20.
See the SRI' instruction.

XXl9 I B The character which is used as a
rubout, default value is 5FH (underline).

XXlA 1 Both Type of nurreric variables and constants
where l=integer, 2=short floating point,
and 4=long floating point. The default
value is 4.

/"
'.

r-,
'.~

XXlB

XXIC

XXlD

1

I

4

Both

Both

Both

Line delete character. The default
value is control-U.

The carriage return delay (numberof
nul characters sent after a carriage
return). The default value is O.

Backspace echo - must terminate with
a o. The default value is backspace,
space, backspace, O.



- 233

PATCH SPACE

Disk Version: The only space
of 16K BASIC for user patches
and 103 to IFF. The user can
file at these locations.

available in the disk version
is at locations 425 to 4FF
put and SAVE (CDOS) a patched

,-
,~

/
--.,

~

/~

\-....'



- 234

APPENDIX E:

PROGRAMMING HINTS

1) A$(-l) = "7" + A$(-l) is a handy way to fill a string with
any character (a question mark in this example).

2) Programs execute significantly faster if variables used
in loops and/or for subscripting are declared as type
INTEGER.

3) SAVEd programs mayor may not be compatible between
various revisions of 16K BASIC. LISTed programs always
are!

4) In Cromemco 16K BASIC (unlike most microcomputer BASICs)
constants used in program lines cause execution speeds
as fast or faster than variable references. In addition,
integer constants occupy no more room than a variable
reference.

5) Using the 0th element of arrays (and strings) can save
memory space.

r 6 ) BASIC may be entered from CDOS and requested to immediately
RUN any SAVEd program by entering:

BASIC < program name')

at the CDOS command processor's prompt.

"I'---
---

7) When using ENTER to overlay portions of running programs,
like line numbers in various overlays will cause most
efficient memory usage.

8) Although files OPENed for READ/WRITE may be used as
WRITE-ONLY files, slightly faster execution speeds may
occur if the file is OPENed as WRITE-ONLY.

9) Use SET 0,-1 to disable page width checking. This is
especially useful for graphics output to Diablo-type
printers.

10) VAL will return a zero value if the first character of
the argument string is not a number. This can be an
extremely useful way of decoding a user's input.



- 235

PROGRAMMING HINTS (cont'd)

11) To EXECUTE a BATCH command from BASIC, PRINT the
desired commands to a file called "A:BASIC.CMD" and
then execute the following program:

100 CREATE "A:$$$$.CMD"
200 OPEN\l\"A:$$$$.CMD"
300 PUT\l\CHR$(ll),"@ BASIC.CMD$"
400 CLOSE
500 DSK "A:"
600 BYE

You must specify the appropriate disk drive because
"$$$$.CMD" appears as a peripheral device to BASIC.
"B:" could have been used throughout the program above
instead.

MEMORY REQUIREMENTS

Your Cromemco l6K Disk BASIC is designed to run in a system with

32K of contiguous memory beginning at memory location zero. This

memory should use two Cromemco l6KZ RAM cards or eight Cromemco 4KZ

RAM cards.

For long BASIC programs you may wish to use 48K of memory instead

of 32K. In order to allow you to do this, a version of CDOS designed

to run in 48K is available as a file on your BASIC diskette. For 5"

diskettes this file is named DOSMIN48.SYs. For 8" diskettes this

file is named DOSMAX48.SYs.

If you do have 48K of memory in your system and wish to make use

of all this memory for writing long BASIC programs, you can use the

CDOS WRTSYS command to replace the 32K CDOS system with a 48K system.

for the 5" diskette the form of this command is:

WRTSYS A:=DOSMIN48.SYS

For the 8" diskette the form of this command is:

WRTSYS A:=DOSMAX48.SYS

~-

'-

1.
'-..-1:

,i'--'



-..

/
,--.., .

- 236
CHAINING BASIC PROGRAMS:

These programs demonstrate the ability of Cromemco's

16K Extended BASIC to chain or have one program call another.

This feature is very useful for running large programs on

smaller systems.

Space is most efficiently used if the same line numbers

are used in all programs which are to be chained together. In

the following example, program ONE is run and calls program TWO.

PROGRAM "ONE"

1 GOTO 10
5 ENTER"TWO"

10 DATA 1,2,3,4,5,6,7,8,9
20 READ A,B,C,D,E,F,G,H,I
30 GOTO 5

PROGRAM "TWO"

10 X=A+B+C+D
20 Y=E+F+G+H+I
30 Z=X+Y
40 PRINT X,Y,Z
50 END

»ENTER "ONE"

»RUN

10

***50 END***

35 45

~,

When program ONE is entered and RUN, control is passed to

line l~ by line 1. Then at line 2~, the DATA from line l~ is

READ into variables A through I. Control is then passed to line

5 which calls in the second program. Program TWO overlays lines

l~, 2~, and 3~. The line which follows line 5 is line l~. Now,

however, line l~ is a line from program TWO. The rest of

program TWO is executed with the results being printed out by

line 4~.



'--

\ ("', ~ ~-) r


